DeepCTR-Torch Documentation
Release 0.2.9

Weichen Shen

Oct 21, 2022

Home:

1 News
2 DisscussionGroup

2.1 Quick-Start
2.2 FeatureS. v v i e e e e e e
23 Examples
24 FAQ. e
2.5 History

2.6 DeepCTR-Torch Models API

2.7 DeepCTR-Torch Layers APT

2.8 deepctr_torch.callbacks module
3 Indices and tables
Python Module Index

Index

.................... 29

DeepCTR-Torch Documentation, Release 0.2.9

DeepCTR-Torch is a Easy-to-use , Modular and Extendible package of deep-learning based CTR models along
with lots of core components layer which can be used to build your own custom model easily.It is compatible with
PyTorch.You can use any complex model with model.fit () and model.predict ().

Let’s Get Started! (Chinese Introduction)

You can read the latest code at https://github.com/shenweichen/DeepCTR-Torch and DeepCTR for tensorflow version.

Home: 1

https://pepy.tech/project/deepctr-torch
https://github.com/shenweichen/DeepCTR-Torch
https://github.com/shenweichen/DeepCTR-Torch/fork
https://pypi.org/project/deepctr-torch/
https://github.com/shenweichen/deepctr-torch/issues
./Quick-Start.html
https://zhuanlan.zhihu.com/p/53231955
https://github.com/shenweichen/DeepCTR-Torch
https://github.com/shenweichen/DeepCTR

DeepCTR-Torch Documentation, Release 0.2.9

2 Home:

CHAPTER 1

News

10/22/2022 : Add multi-task models: SharedBottom, ESMM, MMOE, PLE. Changelog
06/19/2022 : Fix some bugs. Changelog
06/14/2021 : Add AFN and fix some bugs. Changelog

https://github.com/shenweichen/DeepCTR-Torch/releases/tag/v0.2.9
https://github.com/shenweichen/DeepCTR-Torch/releases/tag/v0.2.8
./Features.html#afn-adaptive-factorization-network-learning-adaptive-order-feature-interactions
https://github.com/shenweichen/DeepCTR-Torch/releases/tag/v0.2.7

DeepCTR-Torch Documentation, Release 0.2.9

4 Chapter 1. News

CHAPTER 2

DisscussionGroup

wechat ID: deepctrbot

Discussions

2.1 Quick-Start

2.1.1 Installation Guide

deepctr—-torch depends on torch>=1.2.0, you can specify to install it through pip.

https://github.com/shenweichen/DeepCTR/discussions
https://mp.weixin.qq.com/mp/appmsgalbum?__biz=MjM5MzY4NzE3MA==&action=getalbum&album_id=1361647041096843265&scene=126#wechat_redirect

DeepCTR-Torch Documentation, Release 0.2.9

$ pip install -U deepctr-torch

2.1.2 Getting started: 4 steps to DeepCTR-Torch

Step 1: Import model

import pandas as pd

import torch

from sklearn.metrics import log_loss, roc_auc_score

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import LabelEncoder, MinMaxScaler

from deepctr_torch.inputs import SparseFeat, DenseFeat, get_feature_names

data = pd.read_csv('./criteo_sample.txt")

sparse_features = ['C' + str(i) for i in range(l, 27)]
dense_features = ['I' + str(i) for i in range(l, 14)]
data[sparse_features] = data[sparse_features].fillna('-1",)
data[dense_features] = data[dense_features].fillna (0,)
target = ['label']

Step 2: Simple preprocessing

Usually there are two simple way to encode the sparse categorical feature for embedding

» Label Encoding: map the features to integer value from 0 ~ len(#unique) - 1

for feat in sparse_features:
lbe = LabelEncoder ()
data[feat] = lbe.fit_transform(datal[feat])

* Hash Encoding: Currently not supported.

And for dense numerical features,they are usually discretized to buckets,here we use normalization.

mms = MinMaxScaler (feature_range=(0,1))
data[dense_features] = mms.fit_transform(data[dense_features])

Step 3: Generate feature columns

For sparse features, we transform them into dense vectors by embedding techniques. For dense numerical features, we
concatenate them to the input tensors of fully connected layer.

 Label Encoding

fixlen_feature_columns = [SparseFeat (feat, vocabulary_size=data[feat].nunique(),
—embedding_dim=4)

for i, feat in enumerate (sparse_features)] + [DenseFeat (feat, 1,
—)

for feat in dense_features]

* Feature Hashing on the flycurrently not supported

6 Chapter 2. DisscussionGroup

DeepCTR-Torch Documentation, Release 0.2.9

fixlen_feature_columns = [SparseFeat (feat, vocabulary_size=le6,embedding_dim=4, use_
—~hash=True, dtype='string') # since the input is string
for feat in sparse_features] + [DenseFeat (feat, 1,)
for feat in dense_features]

 generate feature columns

dnn_feature_columns = sparse_feature_columns + dense_feature_columns
linear_feature_columns = sparse_feature_columns + dense_feature_columns

feature_names = get_feature_names (linear_feature_columns + dnn_feature_columns)

Step 4: Generate the training samples and train the model

train, test = train_test_split (data, test_size=0.2)

train_model_input = {name:train[name] for name in feature_names}
test_model_input = {name:test[name] for name in feature_names}
device = 'cpu'

use_cuda = True

if use_cuda and torch.cuda.is_available () :
print ('cuda ready...')
device = 'cuda:0'

model = DeepFM(linear_feature_columns,dnn_feature_columns,task="'binary',device=device)
model.compile ("adam", "binary_crossentropy",
metrics=["'binary_crossentropy']l,)

history = model.fit (train_model_input,train[target].values,batch_size=256,epochs=10,
—verbose=2,validation_split=0.2)
pred_ans = model.predict (test_model_input, batch_size=256)

You can check the full code here.

2.2 Features

2.2.1 Overview

With the great success of deep learning, DNN-based techniques have been widely used in CTR estimation task.

DNN based CTR estimation models consists of the following 4 modules: Input, Embedding,
Low—-order&High-order Feature Extractor,Prediction

* Input&Embedding

The data in CTR estimation task usually includes high sparse,high cardinality categorical features and
some dense numerical features.

Since DNN are good at handling dense numerical features,we usually map the sparse categorical features
to dense numerical through embedding technique.

For numerical features,we usually apply discretizationor normalization on them.

2.2. Features 7

./Examples.html#classification-criteo

DeepCTR-Torch Documentation, Release 0.2.9

¢ Feature Extractor

Low-order Extractor learns feature interaction through product between vectors.Factorization-Machine
and it’s variants are widely used to learn the low-order feature interaction.

High-order Extractor learns feature combination through complex neural network functions like
MLP,Cross Net,etc.

2.2.2 Feature Columns

SparseFeat
SparseFeat is a namedtuple with signature SparseFeat (name, vocabulary_size,
embedding_dim, use_hash, dtype,embedding_name, group_name)
e name : feature name
* vocabulary_size : number of unique feature values for sprase feature or hashing space when use_hash=True
* embedding_dim : embedding dimension
* use_hash : defualt False.If True the input will be hashed to space of size vocabulary_size.
e dtype : default £1oat 32.dtype of input tensor.
* embedding_name : default None. If None, the embedding_name will be same as name.

» group_name : feature group of this feature.

DenseFeat

DenseFeat is a namedtuple with signature DenseFeat (name, dimension, dtype)
e name : feature name
¢ dimension : dimension of dense feature vector.

e dtype : default £1oat 32.dtype of input tensor.

VarLenSparseFeat
VarLenSparseFeat is a namedtuple with signature VarLenSparseFeat (sparsefeat, maxlen,
combiner, length_name)

* sparsefeat : a instance of SparseFeat

* maxlen : maximum length of this feature for all samples

* combiner : pooling method,can be sum,mean or max

¢ length_name : feature length name,if None, value O in feature is for padding.

2.2.3 Models

CCPM (Convolutional Click Prediction Model)

CCPM can extract local-global key features from an input instance with varied elements, which can be implemented
for not only single ad impression but also sequential ad impression.

8 Chapter 2. DisscussionGroup

DeepCTR-Torch Documentation, Release 0.2.9

I
I
o : Prediction
€2
€3
.
el I T
Fully connected
Instance matrix
with varied length S \\
. Convolution
.
ko =2
.: Flexible pooling
Convolution p1 = f(s)
CCPM Model AP =g

Liu Q, Yu E, Wu S, et al. A convolutional click prediction model[C]//Proceedings of the 24th ACM International on
Conference on Information and Knowledge Management. ACM, 2015: 1743-1746.

PNN (Product-based Neural Network)

PNN concatenates sparse feature embeddings and the product between embedding vectors as the input of MLP.

PNN Model API

CTR

idd
Fuly Connected 2| OO0 00

Hidden Layer 1

Fully Connected L O O O O O

Product Layer : p
Pair-wisely Connected Q Q\[/Q/Q\ /Q

Embedding Layer

. . Featl 1
Field-wisely Connected eature

Feature 2 Feature N

A b A

Input Field 1 Field 2 Field N

PNN

QuY, Cai H, Ren K, et al. Product-based neural networks for user response prediction[C]//Data Mining (ICDM), 2016
IEEE 16th International Conference on. IEEE, 2016: 1149-1154.

2.2. Features 9

./deepctr_torch.models.ccpm.html
http://ir.ia.ac.cn/bitstream/173211/12337/1/A%20Convolutional%20Click%20Prediction%20Model.pdf
http://ir.ia.ac.cn/bitstream/173211/12337/1/A%20Convolutional%20Click%20Prediction%20Model.pdf
./deepctr_torch.models.pnn.html
https://arxiv.org/pdf/1611.00144.pdf
https://arxiv.org/pdf/1611.00144.pdf

DeepCTR-Torch Documentation, Release 0.2.9

Wide & Deep

WDL’s deep part concatenates sparse feature embeddings as the input of MLP,the wide part use handcrafted feature as
input. The logits of deep part and wide part are added to get the prediction probability.

WDL Model API
Addition —> Weight-1
Connection

>< Inner Product Normal

Output Units

Connection

Sigmoid 4> Embedding

Funetion Lookup P _ A
~ |

Activation
Function -

Hidden Layer

LR part

Dense !
Featureq

Dense
Embeddings

| Cross
| Sparse
‘Features

Sparse
| Features

Field i - Field m

WDL

Cheng H T, Koc L, Harmsen J, et al. Wide & deep learning for recommender systems[C]//Proceedings of the 1st
Workshop on Deep Learning for Recommender Systems. ACM, 2016: 7-10.

DeepFM

DeepFM can be seen as an improvement of WDL and FNN.Compared with WDL,DeepFM use FM instead of LR
in the wide part and use concatenation of embedding vectors as the input of MLP in the deep part. Compared with
FNN,the embedding vector of FM and input to MLP are same. And they do not need a FM pretrained vector to
initialiaze,they are learned end2end.

DeepFM Model API

10 Chapter 2. DisscussionGroup

./deepctr_torch.models.wdl.html
https://arxiv.org/pdf/1606.07792.pdf
https://arxiv.org/pdf/1606.07792.pdf
./deepctr_torch.models.deepfm.html

DeepCTR-Torch Documentation, Release 0.2.9

Addition 4} Weight-1 [
Connection
>><i Inner Product Normal

Connection

Sigmoid > Embedding
Funetion Lookup

Activation
Function

Hidden Layer

Dense

Sparse

i i Field j A Field m
Field i DeepFM

Guo H, Tang R, Ye Y, et al. Deepfm: a factorization-machine based neural network for ctr prediction[J]. arXiv preprint
arXiv:1703.04247, 2017.

MLR(Mixed Logistic Regression/Piece-wise Linear Model)

MLR can be viewed as a combination of $2m$ LR model, m is the piece(region) number. m LR model learns
the weight that the sample belong to each region,another m LR model learn sample’s click probability in the region.
Finally,the sample’s CTR is a weighted sum of each region’s click probability.Notice the weight is normalized weight.

MLR Model API

2.2. Features 11

http://www.ijcai.org/proceedings/2017/0239.pdf
http://www.ijcai.org/proceedings/2017/0239.pdf
./deepctr_torch.models.mlr.html

DeepCTR-Torch Documentation, Release 0.2.9

r |
Addition) Weight-1 ‘ |
Connection : |
|
‘ +
. |
[Output Units
>< Inner Product Normal | /V * b }
Connection | //,/*/ ¢ - — ‘
[- —~_
| - - |
. . |
D o T B |
unction Lookup | Y /Y /,Y }
AA % |
e ——— T ——— = O Bl
_— — —= /

Activation _— _—
Function - —

} Region Split
|Softmax Layer

Input

User Feature Ad Feature MLR

Gai K, Zhu X, Li H, et al. Learning Piece-wise Linear Models from Large Scale Data for Ad Click Prediction[J].
arXiv preprint arXiv:1704.05194, 2017.

NFM (Neural Factorization Machine)

NFM use a bi-interaction pooling layer to learn feature interaction between embedding vectors and compress the result
into a singe vector which has the same size as a single embedding vector. And then fed it into a MLP.The output logit
of MLP and the output logit of linear part are added to get the prediction probability.

NFM Model API

12 Chapter 2. DisscussionGroup

http://arxiv.org/abs/1704.05194
http://arxiv.org/abs/1704.05194
./deepctr_torch.models.nfm.html

DeepCTR-Torch Documentation, Release 0.2.9

4’» Addition) Weight-1 T
Connection !

@ Element-wise i \ Qutput Units

y

Product Norma!
Connection

Sigmoid > Embedding

Function Lookup A SR :

Activation
Function

Bi—Interaction
Pooling Layer

Dense

Embeddings . . .

Sparse
Features

i i Field j - Field m
Field i] NEM

He X, Chua T S. Neural factorization machines for sparse predictive analytics[C]//Proceedings of the 40th International
ACM SIGIR conference on Research and Development in Information Retrieval. ACM, 2017: 355-364.

AFM (Attentional Factorization Machine)

AFM is a variant of FM,tradional FM sums the inner product of embedding vector uniformly. AFM can be seen as
weighted sum of feature interactions.The weight is learned by a small MLP.

AFM Model API

2.2. Features 13

https://arxiv.org/pdf/1708.05027.pdf
https://arxiv.org/pdf/1708.05027.pdf
./deepctr_torch.models.afm.html

DeepCTR-Torch Documentation, Release 0.2.9

Xy T]
X3 I (v20v4)x2x4
oo “_’ | |
« 2 v;,{’/ E T
o 48 3
Nn N T
Sparse?put Embedding Pair-wise Interaction Attention-based Pooling Prediction Score
i Layer ‘ Layer ‘

AFM

Xiao J, Ye H, He X, et al. Attentional factorization machines: Learning the weight of feature interactions via attention
networks[J]. arXiv preprint arXiv:1708.04617, 2017.

DCN (Deep & Cross Network)

DCN use a Cross Net to learn both low and high order feature interaction explicitly,and use a MLP to learn feature
interaction implicitly. The output of Cross Net and MLP are concatenated.The concatenated vector are feed into one
fully connected layer to get the prediction probability.

DCN Model API

14 Chapter 2. DisscussionGroup

http://www.ijcai.org/proceedings/2017/435
http://www.ijcai.org/proceedings/2017/435
./deepctr_torch.models.dcn.html

DeepCTR-Torch Documentation, Release 0.2.9

: Combination output layer r @

p = sigmoid(Wiagit Tstack + blogit) T

...

R ! . . === R

.............

Embeddmg and stacklng Iayer 6 6

. Dense feature O Embedding vec . Deep layer
© Sparse feature () Cross layer @ Output

DCN

Cross
Net in DCN-M

Wang R, Fu B, Fu G, et al. Deep & cross network for ad click predictions[C]//Proceedings of the ADKDD’17. ACM,
2017: 12.

2.2. Features 15

https://arxiv.org/abs/1708.05123
https://arxiv.org/abs/1708.05123

DeepCTR-Torch Documentation, Release 0.2.9

DCN-Mix (Improved Deep & Cross Network with mix of experts and matrix kernel)

DCN-Mix uses a matrix kernel instead of vector kernel in CrossNet compared with DCN,and it uses mixture of experts
to learn feature interactions.

DCN-Mix Model API

Output

Gatings

. Expert k
Ex(x)

Expert 1

---------------------- Input x

DCN-
Mix
Wang R, Shivanna R, Cheng D Z, et al. DCN-M: Improved Deep & Cross Network for Feature Cross Learning in
Web-scale Learning to Rank Systems[J]. arXiv preprint arXiv:2008.13535, 2020.

DIN (Deep Interest Network)

DIN introduce a attention method to learn from sequence(multi-valued) feature. Tradional method usually use
sum/mean pooling on sequence feature. DIN use a local activation unit to get the activation score between candi-
date item and history items. User’s interest are represented by weighted sum of user behaviors. user’s interest vector
and other embedding vectors are concatenated and fed into a MLP to get the prediction.

DIN Model API
DIN example

16 Chapter 2. DisscussionGroup

./deepctr_torch.models.dcnmix.html
https://arxiv.org/abs/2008.13535
https://arxiv.org/abs/2008.13535
./deepctr_torch.models.din.html
https://github.com/shenweichen/DeepCTR-Torch/tree/master/examples/run_din.py

DeepCTR-Torch Documentation, Release 0.2.9

Softmax (2)
PReLU/Dice (80)

PRelLU/Dice (20@)

ENT & EE
[Concat & Flatten |

Activatiop Weight

]
Linear (1)
PRelu/Dice (36)

N EmE &
(Concat)

t
[B}

 m
[SUM Pooling |

$
X

Goods 1'Weight Goods 2' Weight

=

Goods M$ Weight

" out
L Product

EEN
Inputs from User

[=
Inputs from Ad

- Activation Activation Activation Activation Unit
Unit Unit Unit

t % Product

m EEm [L [8 | 8 nm @ Goods ID

Concat Concat) Concat Concat | Concat [Concat @ shop ID

Embedding CHCEL RER TR TR e menm O Cate 1D

Layer "N AEN AEn AEN HEN mE.m O Other ID
505 eob 000 000 06d 660 [Klwer

User Profile Goods 1 Goods 2 Goods N

Candidate Context
Ad Features
Deep Interest Network

Features User Behaviors

DIN

Zhou G, Zhu X, Song C, et al. Deep interest network for click-through rate prediction[C]//Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2018: 1059-1068.

DIEN (Deep Interest Evolution Network)

Deep Interest Evolution Network (DIEN) uses interest extractor layer to capture temporal interests from history behav-
ior sequence. At this layer, an auxiliary loss is proposed to supervise interest extracting at each step. As user interests
are diverse, especially in the e-commerce system, interest evolving layer is proposed to capture interest evolving pro-
cess that is relative to the target item. At interest evolving layer, attention mechanism is embedded into the sequential
structure novelly, and the effects of relative interests are strengthened during interest evolution.

DIEN Model API
DIEN example

2.2. Features

17

https://arxiv.org/pdf/1706.06978.pdf
https://arxiv.org/pdf/1706.06978.pdf
./deepctr_torch.models.dien.html
https://github.com/shenweichen/DeepCTR-Torch/tree/master/examples/run_dien.py

DeepCTR-Torch Documentation, Release 0.2.9

[Output)

1 ”'*Qr@‘ Attention Score Softmax (2)]
u ; PReLU/Dice (80
: (h\) < LN
! - r EEEEEEEN
1 B et
| AUGRU e our Concat & Flatten
T -m

(+) Inner Product he(T)

&3 Product
e s s / Interest
! Auxiliary Loss ! [AUGRU ———+[AUGRU |-+ - —] AUGRU ———[AUGRU | Evolving Layer
| 1 (] |

Click Not Click |
E A e : ”Attention‘ ‘Attentiun‘ ‘Attentiun‘ ‘Attention‘ Interest
: 2 ‘-M\ ! 1 S e f f Extractor Layer
m \ - / . : L "1"d 13 1 ah L] m
ety) eCtir | D B U3 4o Behavior
T W L [- e Levar
I L___Sampling i’ = - - -

} 4 e(- e(@ . e(-D e(T)
{ Embedding Layer)
) | t 1 f
b(1) b(2) - b(T-1) b(T) Target Ad Context UserProfile

Feature Feature

user behavior sequence

DIEN

Zhou G, Mou N, Fan Y, et al. Deep Interest Evolution Network for Click-Through Rate Prediction[J]. arXiv preprint
arXiv:1809.03672, 2018.

xDeepFM

xDeepFM use a Compressed Interaction Network (CIN) to learn both low and high order feature interaction explic-
itly,and use a MLP to learn feature interaction implicitly. In each layer of CIN,first compute outer products between
$x7k$ and x_0 to get a tensor Z_{k+1},then use a 1DConv to learn feature maps H_{k+1} on this tensor.
Finally,apply sum pooling on all the feature maps H_kS to get one vector.The vector is used to compute the logit that
CIN contributes.

xDeepFM Model API
1 vt
peattl® ¥ sea‘ﬁ'imap I |
i e T
K+l
H*{ z < ,/ / xR+l SUmLQUIEHg SurL pm:!\ing Suml pDuI!ng
L —— 4
-
xk 2
[E .—._-._R_
(.]
|| [
Heyi | 1
| m [—— Zk+1
1
:_ o : : Q{ Hi
14 —_
x = X0 ,
my x
(a) Outer products along each dimension for (b) The k-th layer of EHI\T It compresses the
feature interactions. The tensor Z¥*! is an in- intermediate tensor Z¥"! to Hy.,, embedding
termediate result for further learning. vectors (aslo known as feature maps). (c) An overview of the CIN architecture.

Figure 4: Components and architecture of the Compressed Interaction Network (CIN).

CIN

18 Chapter 2. DisscussionGroup

https://arxiv.org/pdf/1809.03672.pdf
https://arxiv.org/pdf/1809.03672.pdf
./deepctr_torch.models.xdeepfm.html

DeepCTR-Torch Documentation, Release 0.2.9

£\, Output unit

Linear cn]
e @ albl, =200 a2 | L Embedding
|_ et I S il IR B S S layer
j T_ Embedding lookup I
L e T e gm = T _._ T T -I Input
|_ o 1t -0 0 1 -0 ™ 1 10 | farures
Field 1 Field 2 Field m

Figure 5: The architecture of xDeepFM.

xDeepFM

Lian J, Zhou X, Zhang F, et al. xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender

Systems[J]. arXiv preprint arXiv:1803.05170, 2018.

Autolnt(Automatic Feature Interaction)

Autolnt use a interacting layer to model the interactions between different features. Within each interacting layer,
each feature is allowed to interact with all the other features and is able to automatically identify relevant features
to form meaningful higher-order features via the multi-head attention mechanism. By stacking multiple interacting

layers,Autolnt is able to model different orders of feature interactions.

AutoInt Model API

2.2. Features

19

https://arxiv.org/pdf/1803.05170.pdf
https://arxiv.org/pdf/1803.05170.pdf
./deepctr_torch.models.autoint.html

DeepCTR-Torch Documentation, Release 0.2.9

(h)
‘ . WVa{ue ‘ . .

Key ™
m

o1

R
W, &
/ ag:}

Figure 3: The architecture of interacting layer. Combinato-

rial features are conditioned on attention weights, i.e., a},},‘),

L 4

€m

InteractingLayer

20 Chapter 2. DisscussionGroup

DeepCTR-Torch Documentation, Release 0.2.9

[

[

| Multi-head I

: Self-Attention :
e s
1 Embedding | | [
llergooe ~ ©000 -~ 0000 .|
[N S . S |
TR T"m.jl- ——— eSS === = = - s = === — =
: : 3 I
I 'u!nnn!-uuuuu‘ (ELLLTTL LTS :-nunui: I
| Feature field 1 Feature field M |

Input Layer: sparse feature X
Figure 1: Overview of our proposed model Autolnt. The de-

tails of embedding layer and interacting layer are illustrated

in Figure 2 and Figure 3 respectively.

Autolnt

Song W, Shi C, Xiao Z, et al. Autolnt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks[J].
arXiv preprint arXiv:1810.11921, 2018.

ONN(Operation-aware Neural Networks for User Response Prediction)

ONN models second order feature interactions like like FFM and preserves second-order interaction information as
much as possible.Further more,deep neural network is used to learn higher-ordered feature interactions.

ONN Model API

2.2. Features 21

https://arxiv.org/abs/1810.11921
https://arxiv.org/abs/1810.11921
./deepctr_torch.models.onn.html

DeepCTR-Torch Documentation, Release 0.2.9

J Sigmoid Unit
=~ Relu Unit
X Inner Product Unit

]
Operation-aware .E
Embedding

Feature 1 Feature 2 Feature m
ONN

Yang Y, Xu B, Shen F, et al. Operation-aware Neural Networks for User Response Prediction[J]. arXiv preprint
arXiv:1904.12579, 2019.

FiBiNET(Feature Importance and Bilinear feature Interaction NETwork)

Feature Importance and Bilinear feature Interaction NETwork is proposed to dynamically learn the feature importance
and fine-grained feature interactions. On the one hand, the FiBiNET can dynamically learn the importance of fea-
tures via the Squeeze-Excitation network (SENET) mechanism; on the other hand, it is able to effectively learn the
feature interactions via bilinear function.

FiBiNET Model API

22 Chapter 2. DisscussionGroup

https://arxiv.org/pdf/1904.12579.pdf
https://arxiv.org/pdf/1904.12579.pdf
./deepctr_torch.models.fibinet.html

DeepCTR-Torch Documentation, Release 0.2.9

Multiple Hidden Layers

Deep Part

ShallowPart [0 0@ 00® ~0@ 000080800 ® 80 0080 @0 Combination Layer

o
| ' l t
| ooo. m: : ooo. m: Bilinear-Interaction Layer

| Embeddings o SENET-Like Embeddings
z
- 3 >
= Embedding Layer
®
-
OOOOOGO. Sparse Input Layer
Field 1 Fleld 2 Field f

FiBiNET
Huang T, Zhang Z, Zhang J. FiBiNET: Combining Feature Importance and Bilinear feature Interaction for Click-
Through Rate Prediction[J]. arXiv preprint arXiv:1905.09433, 2019.
IFM(Input-aware Factorization Machine)

Input-aware Factorization Machine (IFM) learns a unique input-aware factor for the same feature in different instances

via a neural network.

IFM Model API

@ o

t

| Factorization Machines |

FM Prediction Layer

Reweighting Layer

lhpmn'laﬁonneﬁ*lg

Factor Estimating
Net

Wy - [Vo [v, v, [] Embedding Layer

o@o@o 0@ 0 00 | Sparselnputx

IFM
Yu Y, Wang Z, Yuan B. An Input-aware Factorization Machine for Sparse Prediction[C]//IICAIL 2019: 1466-1472.

2.2. Features 23

https://arxiv.org/pdf/1905.09433.pdf
https://arxiv.org/pdf/1905.09433.pdf
./deepctr_torch.models.ifm.html
https://www.ijcai.org/Proceedings/2019/0203.pdf

DeepCTR-Torch Documentation, Release 0.2.9

DIFM(Dual Input-aware Factorization Machine)

Dual Inputaware Factorization Machines (DIFM) can adaptively reweight the original feature representations at the bit-
wise and vector-wise levels simultaneously.Furthermore, DIFMs strategically integrate various components including
Multi-Head Self-Attention, Residual Networks and DNNs into a unified end-to-end model.

DFM Model API

@ Output

|
Factorization Machines Prediction Layer
Representation Refining] Reweighting Layer

[Transformation + Combination]Combination Layer

B | oo e

W w L W 9 ' Embedding Layer
- .___'_‘_‘q—-_.___‘_‘__‘ - 1
01..0 00..1 .. 10..0 | Sparse Input x
Field 1 Field 2 Field h

DIFM

LuW, YuY, Chang Y, et al. A Dual Input-aware Factorization Machine for CTR Prediction[C]//IJCAI. 2020: 3139-
3145.

AFN(Adaptive Factorization Network: Learning Adaptive-Order Feature Interactions)

Adaptive Factorization Network (AFN) can learn arbitrary-order cross features adaptively from data. The core of AFN
is a logarith- mic transformation layer to convert the power of each feature in a feature combination into the coefficient
to be learned. AFN Model API

24 Chapter 2. DisscussionGroup

./deepctr_torch.models.difm.html
https://www.ijcai.org/Proceedings/2020/0434.pdf
https://www.ijcai.org/Proceedings/2020/0434.pdf
./deepctr_torch.models.afn.html

DeepCTR-Torch Documentation, Release 0.2.9

----- Transformation
Rk P . - T i) 9
[Layer L J
Hidden Layers :
| Layer 1]
[Exponential Transformation & Concatenation J
Logarithmic [... ..] {.....] [.....]
Transformation
L
g 00000 00000 00000
| | Logarithmic Transformation I }

Embedding Layer {...I @& .] [... .].] [...I ® .]
Input Feature Vector @ @ --- @ - 00 . 000

(Sparse) field 1 field 2 field m

AFN

Cheng, W., Shen, Y. and Huang, L. 2020. Adaptive Factorization Network: Learning Adaptive-Order Feature Interac-
tions. Proceedings of the AAAI Conference on Artificial Intelligence. 34, 04 (Apr. 2020), 3609-3616.

2.2.4 MultiTask Models
SharedBottom

Hard parameter sharing is the most commonly used approach to MTL in neural networks. It is generally applied by
sharing the hidden layers between all tasks, while keeping several task-specific output layers.

SharedBottom Model API

2.2. Features 25

https://arxiv.org/pdf/1909.03276
https://arxiv.org/pdf/1909.03276
./deepctr_torch.models.multitask.sharedbottom.html

DeepCTR-Torch Documentation, Release 0.2.9

Task Al [Task B| |Task C| Task-
1 specific
layers

Shared
x layers

SharedBottom

Ruder S. An overview of multi-task learning in deep neural networks[J]. arXiv preprint arXiv:1706.05098, 2017.

ESMM(Entire Space Multi-task Model)

ESMM models CVR in a brand-new perspective by making good use of sequential pattern of user actions, i.e., impres-
sion — click — conversion. The proposed Entire Space Multi-task Model (ESMM) can eliminate the two problems
simultaneously by i) modeling CVR directly over the entire space, ii) employing a feature representation transfer
learning strategy.

ESMM Model AP

26 Chapter 2. DisscussionGroup

https://arxiv.org/pdf/1706.05098.pdf
./deepctr_torch.models.multitask.esmm.html

DeepCTR-Torch Documentation, Release 0.2.9

Main Task Auxiliary Tasks
CVR element—v\ns%/" RETGVR
o]

MultiLayer
Perception

Field-wise
Pooling Layer

Embedding

HE H B H B
Layer

VST ST S SO S S S S
000 00 || OO GO

A
|
I
I
1
|
1

———————

’

user field item field user field item field
CVR-task features CTR-task features

Ma X, Zhao L, Huang G, et al. Entire space multi-task model: An effective approach for estimating post-click conver-
sion rate[C]//The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval.
2018.

MMOE(Multi-gate Mixture-of-Experts)

Multi-gate Mixture-of-Experts (MMoE) explicitly learns to model task relationships from data. We adapt the Mixture-
of- Experts (MoE) structure to multi-task learning by sharing the expert submodels across all tasks, while also having
a gating network trained to optimize each task.

MMOE Model API

2.2. Features 27

ESMM

https://dl.acm.org/doi/10.1145/3209978.3210104
https://dl.acm.org/doi/10.1145/3209978.3210104
https://dl.acm.org/doi/10.1145/3209978.3210104
./deepctr_torch.models.multitask.mmoe.html

DeepCTR-Torch Documentation, Release 0.2.9

Output A

Output B

A

Tower B

Input

Gate B

(c)

e Vector

------- > Scalar

Ma J, Zhao Z, Yi X, et al. Modeling task relationships in multi-task learning with multi-gate mixture-of-
experts[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Min-

ing. 2018.

PLE(Progressive Layered Extraction)

PLE separates shared components and task-specific components explicitly and adopts a progressive rout- ing mecha-
nism to extract and separate deeper semantic knowledge gradually, improving efficiency of joint representation learn-
ing and information routing across tasks in a general setup.

PLE Model API

28

Chapter 2. DisscussionGroup

MMOE

https://dl.acm.org/doi/abs/10.1145/3219819.3220007
https://dl.acm.org/doi/abs/10.1145/3219819.3220007
https://dl.acm.org/doi/abs/10.1145/3219819.3220007
./deepctr_torch.models.multitask.ple.html

DeepCTR-Torch Documentation, Release 0.2.9

Tower A Tower B
TA.TI.A TB,nB
Ty, Tg1

e]

Experts Shared Experts B i

N N N N N N N N N
1M 1Bl B

----------- | | —

m
X
O
1]
=
—~
wn
>

Extraction Network

: T T Multi-level

| | Extraction
[Extraction J | Networks
i1 SN D 4
: Experts A Experts Shared Experts B .
APAIDARC A AR A AR ™
N L
; !
e R -| Input } ---------------------- ;

PLE

Tang H, Liu J, Zhao M, et al. Progressive layered extraction (ple): A novel multi-task learning (mtl) model for
personalized recommendations[C]//Fourteenth ACM Conference on Recommender Systems. 2020.

2.2.5 Layers

The models of deepctr are modular, so you can use different modules to build your own models.

You can see layers API in Layers

2.3 Examples

2.3.1 Classification: Criteo

The Criteo Display Ads dataset is for the purpose of predicting ads click-through rate. It has 13 integer features and
26 categorical features where each category has a high cardinality.

2.3. Examples 29

https://dl.acm.org/doi/10.1145/3383313.3412236
https://dl.acm.org/doi/10.1145/3383313.3412236
./Layers.html

DeepCTR-Torch Documentation, Release 0.2.9

label M 12 13 14 15 16 7 18 19 .. Cc17 c18 Cc19 c20 C21 c22 c23 c24
0 0 NaN 3 2600 NaN 176680 NaN NaN 330 NaN ebbar672 87c6f83c NaN NaN 0429f84b NaN 3ail71ecb c0d61a5¢c
1 0 NaN -1 190 350 30251.0 2470 10 350 160.0 .. d4bb7bd8 6fc34bfb NaN NaN 5155d8a3 NaN be7c41b4 ded4aacd
2 0 00 o0 20 120 20130 1640 60 350 5230 .. e5ba7672 675c9258 NaN NaN 2e01979f NaN bcdee96c 6d5d1302
3 0 NaN 13 10 40 16836.0 2000 50 40 290 .. e5ba7672 52e44668 NaN NaN e587c466 NaN 32c7478e 3b183c5c
4 0

0.0 0 1040 270 19900 1420 40 320 370 .. e5ba7672 25cB88e42 21ddcdcd b1252a9d 0e8585d2 NaN 32c7478e 0d4abdia image

In this example,we simply normailize the dense feature between 0 and 1,you can try other transformation technique
like log normalization or discretization.Then we use SparseFeat and DenseFeat to generate feature columns for sparse
features and dense features.

This example shows how to use DeepFM to solve a simple binary classification task. You can get the demo data
criteo_sample.txt and run the following codes.

import pandas as pd

import torch

from sklearn.metrics import log_loss, roc_auc_score

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import LabelEncoder, MinMaxScaler

from deepctr_torch.inputs import SparseFeat, DenseFeat, get_feature_names
from deepctr_torch.models import =

if name == "__main__ ":
data = pd.read_csv('./criteo_sample.txt')
sparse_features = ['C' + str(i) for i in range(l, 27)]
dense_features = ['I' + str(i) for i in range(l, 14)]
datal[sparse_features] = data[sparse_features].fillna('-1",)
data[dense_features] = datal[dense_features].fillna (0,)
target = ['label']

1.Label Encoding for sparse features,and do simple Transformation for dense_
— features
for feat in sparse_features:
lbe = LabelEncoder ()

data[feat] = lbe.fit_transform(datal[feat])
mms = MinMaxScaler (feature_range=(0, 1))
data[dense_features] = mms.fit_transform(data[dense_features])

2.count #unique features for each sparse field,and record dense feature field

—name

fixlen_feature_columns = [SparseFeat (feat, datalfeat].nunique())

for feat in sparse_features] + [DenseFeat (feat, 1,)
for feat in dense_

— features]

dnn_feature_columns = fixlen_feature_columns

linear_feature_columns = fixlen_ feature_columns

feature_names = get_feature_names (

linear_ feature_columns + dnn_feature_columns)

3.generate input data for model

(continues on next page)

30 Chapter 2. DisscussionGroup

./Features.html#sparsefeat
./Features.html#densefeat
https://github.com/shenweichen/DeepCTR-Torch/tree/master/examples/criteo_sample.txt

DeepCTR-Torch Documentation, Release 0.2.9

(continued from previous page)

train, test = train_test_split (data, test_size=0.2)
train_model_input = {name: train[name] for name in feature_names}
test_model_input = {name: test[name] for name in feature_names}

4.Define Model,train,predict and evaluate

device = 'cpu'

use_cuda = True

if use_cuda and torch.cuda.is_available():
print ('cuda ready..."')
device = 'cuda:0'

model = DeepFM(linear_feature_columns=linear_feature_columns, dnn_feature_
—columns=dnn_feature_columns,
task="binary"',
12_reg_embedding=le-5, device=device)

model.compile ("adagrad", "binary_crossentropy",
metrics=["binary_crossentropy", "auc"],)
model.fit (train_model_input,train[target].values,batch_size=32,epochs=10,
—verbose=2,validation_split=0.0)

pred_ans = model.predict (test_model_input, 256)

print ("")
print ("test LogLoss", round(log_loss(test[target].values, pred_ans), 4))
print ("test AUC", round(roc_auc_score (test[target].values, pred_ans), 4))

2.3.2 Regression: Movielens

The MovieLens data has been used for personalized tag recommendation,which contains 668, 953 tag applications of
users on movies. Here is a small fraction of data include only sparse field.

movie_id user_id gender age occupation zip rating
254181 2944 1545 M 25 20 20008 4
481546 2208 2962 M 35 3 94109 3
166949 3629 1062 M 50 19 59457 5
536371 569 3308 F 18 20 15701-1348 2
117094 2763 754 M 35 7 38024 4

image

This example shows how to use DeepFM to solve a simple binary regression task. You can get the demo data movie-
lens_sample.txt and run the following codes.

import pandas as pd

import torch

from sklearn.metrics import mean_squared_error

from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder

from deepctr_torch.inputs import SparseFeat, get_feature_names

(continues on next page)

2.3. Examples 31

https://github.com/shenweichen/DeepCTR-Torch/tree/master/examples/movielens_sample.txt
https://github.com/shenweichen/DeepCTR-Torch/tree/master/examples/movielens_sample.txt

DeepCTR-Torch Documentation, Release 0.2.9

(continued from previous page)

from deepctr_torch.models import DeepFM

if _ name_ == "_ main_ ":
data = pd.read_csv("./movielens_sample.txt")
sparse_features = ["movie_id", "user_id",
"gender", "age", "occupation", "zip"]
target = ['rating']

1.Label Encoding for sparse features,and do simple Transformation for dense_
—features

for feat in sparse_features:

lbe = LabelEncoder ()

data[feat] = lbe.fit_transform(datal[feat])
2.count #unique features for each sparse field
fixlen_feature_columns = [SparseFeat (feat, data[feat].nunique())

for feat in sparse_features]

linear_feature_columns = fixlen_feature_columns
dnn_feature_columns = fixlen_ feature_columns
feature_names = get_feature_names (linear_feature_columns + dnn_feature_columns)

3.generate input data for model

train, test = train_test_split(data, test_size=0.2)
train_model_input = {name: train[name] for name in feature_names}
test_model_input = {name: test[name] for name in feature_names}

4.Define Model,train,predict and evaluate

device = 'cpu'

use_cuda = True

if use_cuda and torch.cuda.is_available() :
print ('cuda ready...")
device = 'cuda:0'

model = DeepFM(linear_feature_columns, dnn_feature_columns, task='regression',
—device=device)
model.compile ("adam", "mse", metrics=['mse'],)

history = model.fit (train_model_input,train[target].values,batch_size=256,
—epochs=10,verbose=2,validation_split=0.2)
pred_ans = model.predict (test_model_input, batch_size=256)
print ("test MSE", round(mean_squared_error (
test[target] .values, pred_ans), 4))

2.3.3 Multi-value Input : Movielens

The MovieLens data has been used for personalized tag recommendation,which contains 668, 953 tag applications of
users on movies. Here is a small fraction of data include sparse fields and a multivalent field.

32 Chapter 2. DisscussionGroup

DeepCTR-Torch Documentation, Release 0.2.9

movie_id user_id gender age occupation zip genres rating
0 12 107 0 2 4 35 Comedy|Drama 4
1 169 123 1 1 4 118 Action|Thriller 3
2 6 12 0 2 13 99 Drama|Romance 4
3 112 21 1 1 18 55 Action|Adventure 3
4 45 187 1 5 19 41 Comedy|Drama 5

There are 2 additional steps to use DeepCTR with sequence feature input.
1. Generate the paded and encoded sequence feature of sequence input feature(value 0 is for padding).
2. Generate config of sequence feature with VarLenSparseFeat

This example shows how to use DeepFM with sequence(multi-value) feature. You can get the demo data movie-
lens_sample.txt and run the following codes.

image

import numpy as np

import pandas as pd

import torch

from sklearn.preprocessing import LabelEncoder

from tensorflow.python.keras.preprocessing.sequence import pad_sequences

from deepctr_ torch.inputs import SparseFeat, VarLenSparseFeat, get_feature_names
from deepctr_torch.models import DeepFM

def split (x):
key_ans = x.split('|")
for key in key_ans:
if key not in key2index:

Notice : input value 0 is a special "padding",so we do not use 0 to,
—encode valid feature for sequence input
key2index[key] = len(key2index) + 1

return list (map(lambda x: key2index([x], key_ans))

if _ name_ == "_ _main__ ":
data = pd.read_csv("./movielens_sample.txt")
sparse_features = ["movie_id", "user_id",
"gender", "age", "occupation", "zip", 1]
target = ['rating']

1.Label Encoding for sparse features,and process sequence features
for feat in sparse_features:

lbe = LabelEncoder ()

data[feat] = lbe.fit_transform(datal[feat])
preprocess the sequence feature

key2index = {}
genres_list = list (map(split, datal['genres'].values))
genres_length = np.array(list (map(len, genres_list)))

(continues on next page)

2.3. Examples 33

./Features.html#varlensparsefeat
https://github.com/shenweichen/DeepCTR-Torch/tree/master/examples/movielens_sample.txt
https://github.com/shenweichen/DeepCTR-Torch/tree/master/examples/movielens_sample.txt

DeepCTR-Torch Documentation, Release 0.2.9

(continued from previous page)

max_len = max (genres_length)
Notice : padding='post’
genres_list = pad_sequences (genres_list, maxlen=max_len, padding='post',)

2.count #unique features for each sparse field and generate feature config for,
—sequence feature

fixlen_feature_columns = [SparseFeat (feat, data[feat].nunique (), embedding dim=4)
for feat in sparse_features]

varlen_feature_columns = [VarLenSparseFeat (SparseFeat ('genres', vocabulary_
—size=len (
key2index) + 1, embedding_dim=4), maxlen=max_len, combiner='mean')] # Notice,

—: value 0 is for padding for sequence input feature

linear_feature_columns = fixlen_feature_columns + varlen_feature_columns
dnn_feature_columns = fixlen_feature_columns + varlen_feature_columns

feature_names = get_feature_names (linear_feature_columns + dnn_feature_columns)

3.generate input data for model
model_input = {name: data[name] for name in sparse_features} #
model_input["genres"] = genres_list

4.Define Model,compile and train

device = 'cpu'

use_cuda = True

if use_cuda and torch.cuda.is_available():
print ('cuda ready...')
device = 'cuda:0'

model = DeepFM(linear_feature_columns, dnn_feature_columns, task='regression', |
—device=device)

model.compile ("adam", "mse", metrics=['mse'],)
history = model.fit (model_input,dataltarget].values,batch_size=256,epochs=10,
—verbose=2,validation_split=0.2)

2.3.4 MultiTask Learning:MMOE

This example shows how to use MMOE to solve a multi task learning problem. You can get the demo data
byterec_sample.txt and run the following codes.

import pandas as pd

import torch

from sklearn.metrics import log_loss, roc_auc_score

from sklearn.preprocessing import LabelEncoder, MinMaxScaler

from deepctr_torch.inputs import SparseFeat, DenseFeat, get_feature_names
from deepctr_torch.models import =

if name == "__main_ ":
data description can be found in https://www.biendata.xyz/competition/

—Icmeclrnallengezul (continues on next page)

34 Chapter 2. DisscussionGroup

https://github.com/shenweichen/DeepCTR-Torch/tree/master/examples/byterec_sample.txt

DeepCTR-Torch Documentation, Release 0.2.9

(continued from previous page)

data = pd.read_csv('./byterec_sample.txt', sep='\t',
names=["uid", "user_city", "item_id", "author_id", "item_city",
— "channel", "finish", "like",
"music_id", "device", "time", "duration_time"])

sparse_features = ["uid", "user_city", "item_id", "author_id", "item_city",
—"channel”, "music_id", "device"]
dense_features = ["duration_ time"]

target = ['finish', 'like']

1.Label Encoding for sparse features,and do simple Transformation for dense_
— features
for feat in sparse_features:
lbe = LabelEncoder ()

data[feat] = lbe.fit_transform(datal[feat])
mms = MinMaxScaler (feature_range=(0, 1))
data[dense_features] = mms.fit_transform(data[dense_features])

2.count #unique features for each sparse field,and record dense feature field_

—name

fixlen_feature_columns = [SparseFeat (feat, vocabulary_size=data[feat] .max() + 1,
—embedding_dim=4)
for feat in sparse_features] + [DenseFeat (feat, 1,)
for feat in dense_

—features]

dnn_feature_columns = fixlen_feature_columns
linear_feature_columns = fixlen_feature_columns

feature_names = get_feature_names (
linear_feature_columns + dnn_feature_columns)

3.generate input data for model

split_boundary = int (data.shapel[0] * 0.8)

train, test = datal[:split_boundary], datal[split_boundary:]
train_model_input = {name: train[name] for name in feature_names}
test_model_input = {name: test[name] for name in feature_names}

4.Define Model,train,predict and evaluate
device = 'cpu'
use_cuda = True
if use_cuda and torch.cuda.is_available():
print ('cuda ready...")
device = 'cuda:0'

model = MMOE (dnn_feature_columns, task_types=['binary', 'binary'],
12_reg_embedding=le-5, task_names=target, device=device)

model.compile ("adagrad", loss=["binary_crossentropy", "binary_ crossentropy"],
metrics=['"'binary_crossentropy'],)

history = model.fit (train_model_input, train[target].values, batch_size=32, |
—epochs=10, verbose=2)

pred_ans = model.predict (test_model_input, 256)

print ("")

(continues on next page)

2.3. Examples 35

DeepCTR-Torch Documentation, Release 0.2.9

(continued from previous page)

for i, target_name in enumerate (target):

print ("%s test LogLoss" % target_name, round(log_loss(test[target[i]].values,
—pred_ans[:, 1]), 4))
print ("%s test AUC" % target_name, round(roc_auc_score (test[target[i]].values,

< pred_ans[:, il), 4))

2.4 FAQ

2.4.1 1. Save or load weights/models

To save/load weights:

import torch

model = DeepFM(...)

torch.save (model.state_dict (), 'DeepFM weights.h5")
model.load_state_dict (torch.load('DeepFM _weights.h5"))

To save/load models:

import torch

model = DeepFM(...)

torch.save (model, 'DeepFM.h5")
model = torch.load('DeepFM.h5")

2.4.2 2. Set learning rate and use earlystopping

Here is a example of how to set learning rate and earlystopping:

from torch.optim import Adagrad
from deepctr_torch.models import DeepFM
from deepctr_torch.callbacks import EarlyStopping, ModelCheckpoint

model = DeepFM(linear_feature_columns,dnn_feature_columns)
model.compile (Adagrad (model.parameters(),0.1024), '"binary crossentropy',metrics=][
—'binary_crossentropy'])

es = EarlyStopping (monitor='val binary crossentropy', min_delta=0, verbose=1,
—patience=0, mode='min'")

mdckpt = ModelCheckpoint (filepath='model.ckpt', monitor='val binary_ crossentropy',
—verbose=1, save_best_only=True, mode='min')

history = model.fit (model_input,datal[target].values,batch_size=256,epochs=10,
—verbose=2,validation_split=0.2,callbacks=[es,mdckpt])

print (history)

[

2.4.3 3. How to add a long dense feature vector as a input to the model?

36 Chapter 2. DisscussionGroup

DeepCTR-Torch Documentation, Release 0.2.9

from deepctr_torch.models import DeepFM
from deepctr_torch.inputs import DenseFeat, SparseFeat,get_feature_names
import numpy as np

feature_columns = [SparseFeat ('user_id',120,),SparseFeat ('item_id',60,),DenseFeat (
—"pic_vec",5)]
fixlen_feature_names = get_feature_names (feature_columns)

user_id = np.array ([[1],[0]1,[1]1])

item_id = np.array([[30],[20],[101])

pic_vec = np.array([[0.1,0.5,0.4,0.3,0.2],10.1,0.5,0.4,0.3,0.21,10.1,0.5,0.4,0.3,0.
—211)

label = np.array([1,0,1])

model_input = {'user_id':user_id, 'item_id':item_id, 'pic_vec':pic_vec}
model = DeepFM(feature_columns, feature_columns)

model.compile ('adagrad', '"binary_crossentropy')
model. fit (model_input, label)

2.4.4 4. How to run the demo with GPU ?

import torch

device = 'cpu'

use_cuda = True

if use_cuda and torch.cuda.is_available() :
print ('cuda ready...')
device = 'cuda:0'

model = DeepFM(...,device=device)

2.4.5 5. How to run the demo with multiple GPUs ?

’model = DeepFM(..., device=device, gpus=[0, 11])

2.5 History

10/22/2022 : v0.2.9 released.Add multi-task models: SharedBottom, ESMM, MMOE, PLE.
06/19/2022 : v0.2.8 released.Fix some bugs.
06/14/2021 : v0.2.7 released.Add AFN and fix some bugs.

04/04/2021 : v0.2.6 released.Add IFM and DIFM;Support multi-gpus running(example).
02/12/2021 : v0.2.5 released.Fix bug in DCN-M.
12/05/2020 : v0.2.4 released.Imporve compatibility & fix issues.Add History callback.(example).

10/18/2020 : v0.2.3 released. Add DCN-M&DCN-Mix.Add EarlyStopping and ModelCheckpoint call-
backs(example).

10/09/2020 : v0.2.2 released.Improve the reproducibility & fix some bugs.

2.5. History 37

https://github.com/shenweichen/DeepCTR-Torch/releases/tag/v0.2.9
https://github.com/shenweichen/DeepCTR-Torch/releases/tag/v0.2.8
https://github.com/shenweichen/DeepCTR-Torch/releases/tag/v0.2.7
./Features.html#afn-adaptive-factorization-network-learning-adaptive-order-feature-interactions
https://github.com/shenweichen/DeepCTR-Torch/releases/tag/v0.2.6
./Features.html#ifm-input-aware-factorization-machine
./Features.html#difm-dual-input-aware-factorization-machine
./FAQ.html#how-to-run-the-demo-with-multiple-gpus
https://github.com/shenweichen/DeepCTR-Torch/releases/tag/v0.2.5
https://github.com/shenweichen/DeepCTR-Torch/releases/tag/v0.2.4
https://deepctr-torch.readthedocs.io/en/latest/FAQ.html#set-learning-rate-and-use-earlystopping
https://github.com/shenweichen/DeepCTR-Torch/releases/tag/v0.2.3
./Features.html#dcn-deep-cross-network
./Features.html#dcn-mix-improved-deep-cross-network-with-mix-of-experts-and-matrix-kernel
https://deepctr-torch.readthedocs.io/en/latest/FAQ.html#set-learning-rate-and-use-earlystopping
https://github.com/shenweichen/DeepCTR-Torch/releases/tag/v0.2.2

DeepCTR-Torch Documentation, Release 0.2.9

03/27/2020 : v0.2.1 released.Add DIN and DIEN .

01/31/2020 : v0.2.0 released.Refactor feature columns.Support to use double precision in metric calculation.

10/03/2019 : v0.1.3 released.Simplify the input logic.

09/28/2019 : v0.1.2 released.Add sequence(multi-value) input support.
09/24/2019 : v0.1.1 released. Add CCPM.
09/22/2019 : DeepCTR-Torch first version v0.1.0 is released on PyPi

2.6 DeepCTR-Torch Models API

2.6.1 deepctr_torch.models.basemodel module

Author: Weichen Shen,weichenswc@ 163.com zanshuxun, zanshuxun@aliyun.com

class deepctr_torch.models.basemodel .BaseModel (linear_feature_columns,
dnn_feature_columns,
12_reg_linear=1e-05,
12_reg_embedding=1e-05,

init_std=0.0001, seed=1024,
task="binary’, device="cpu’,
gpus=None)

compile (optimizer, loss=None, metrics=None)
Parameters

* optimizer — String (name of optimizer) or optimizer instance. See [optimizers](https:
/Ipytorch.org/docs/stable/optim.html).

* loss — String (name of objective function) or objective function. See [losses](https://
pytorch.org/docs/stable/nn.functional.html#loss-functions).

* metrics — List of metrics to be evaluated by the model during training and testing.
Typically you will use metrics=[‘accuracy’].

evaluate (x, y, batch_size=256)
Parameters

* x — Numpy array of test data (if the model has a single input), or list of Numpy arrays (if
the model has multiple inputs).

* y — Numpy array of target (label) data (if the model has a single output), or list of Numpy
arrays (if the model has multiple outputs).

* batch_size — Integer or None. Number of samples per evaluation step. If unspecified,
batch_size will default to 256.

Returns Dict contains metric names and metric values.

fit (x=None, y=None, batch_size=None, epochs=1, verbose=1, initial_epoch=0, validation_split=0.0,
validation_data=None, shuffle=True, callbacks=None)

Parameters
* x — Numpy array of training data (if the model has a single input), or list of Numpy arrays

(if the model has multiple inputs).If input layers in the model are named, you can also pass
a dictionary mapping input names to Numpy arrays.

38 Chapter 2. DisscussionGroup

https://github.com/shenweichen/DeepCTR-Torch/releases/tag/v0.2.1
./Features.html#din-deep-interest-network
./Features.html#dien-deep-interest-evolution-network
https://github.com/shenweichen/DeepCTR-Torch/releases/tag/v0.2.0
./Features.html#feature-columns
https://github.com/shenweichen/DeepCTR-Torch/releases/tag/v0.1.3
https://github.com/shenweichen/DeepCTR-Torch/releases/tag/v0.1.2
./Examples.html#multi-value-input-movielens
https://github.com/shenweichen/DeepCTR-Torch/releases/tag/v0.1.1
./Features.html#ccpm-convolutional-click-prediction-model
https://pypi.org/project/deepctr-torch/
mailto:zanshuxun@aliyun.com
https://pytorch.org/docs/stable/optim.html
https://pytorch.org/docs/stable/optim.html
https://pytorch.org/docs/stable/nn.functional.html#loss-functions
https://pytorch.org/docs/stable/nn.functional.html#loss-functions

DeepCTR-Torch Documentation, Release 0.2.9

* y — Numpy array of target (label) data (if the model has a single output), or list of Numpy
arrays (if the model has multiple outputs).

* batch_size - Integer or None. Number of samples per gradient update. If unspecified,
batch_size will default to 256.

* epochs - Integer. Number of epochs to train the model. An epoch is an iteration over
the entire x and y data provided. Note that in conjunction with initial_epoch, epochs is to
be understood as “final epoch”. The model is not trained for a number of iterations given
by epochs, but merely until the epoch of index epochs is reached.

* verbose - Integer. 0, 1, or 2. Verbosity mode. 0 = silent, 1 = progress bar, 2 = one line
per epoch.

* initial_epoch — Integer. Epoch at which to start training (useful for resuming a
previous training run).

* validation_split — Float between O and 1. Fraction of the training data to be used
as validation data. The model will set apart this fraction of the training data, will not train
on it, and will evaluate the loss and any model metrics on this data at the end of each
epoch. The validation data is selected from the last samples in the x and y data provided,
before shuffling.

* validation_data — tuple (x_val, y_val) or tuple (x_val, y_val, val_sample_weights)
on which to evaluate the loss and any model metrics at the end of each epoch. The model
will not be trained on this data. validation_data will override validation_split.

* shuffle - Boolean. Whether to shuffle the order of the batches at the beginning of each
epoch.

e callbacks — List of deepctr_torch.callbacks.Callback instances. List of callbacks to
apply during training and validation (if). See [callbacks](https://tensorflow.google.cn/
api_docs/python/tf/keras/callbacks). Now available: EarlyStopping , ModelCheckpoint

Returns A History object. Its History.history attribute is a record of training loss values and
metrics values at successive epochs, as well as validation loss values and validation metrics
values (if applicable).

predict (x, batch_size=256)
Parameters

e x — The input data, as a Numpy array (or list of Numpy arrays if the model has multiple
inputs).

* batch_size - Integer. If unspecified, it will default to 256.

Returns Numpy array(s) of predictions.

2.6.2 deepctr_torch.models.ccpm module

Author: Zeng Kai,kk163mail@ 126.com

Reference: [1] Liu Q, Yu F, Wu S, et al. A convolutional click prediction model[C]//Proceedings of the 24th ACM
International on Conference on Information and Knowledge Management. ACM, 2015: 1743-1746. (http:
/fir.ia.ac.cn/bitstream/173211/12337/1/A%20Convolutional %20Click %20Prediction%20Model.pdf)

2.6. DeepCTR-Torch Models API 39

https://tensorflow.google.cn/api_docs/python/tf/keras/callbacks
https://tensorflow.google.cn/api_docs/python/tf/keras/callbacks
http://ir.ia.ac.cn/bitstream/173211/12337/1/A%20Convolutional%20Click%20Prediction%20Model.pdf
http://ir.ia.ac.cn/bitstream/173211/12337/1/A%20Convolutional%20Click%20Prediction%20Model.pdf

DeepCTR-Torch Documentation, Release 0.2.9

class deepctr_torch.models.ccpm.CCPM (linear_feature_columns, dnn_feature_columns,
conv_kernel_width=(6, 5), conv_filters=(4, 4),
dnn_hidden_units=(256,), 12_reg_linear=1e-
05, 12_reg_embedding=1e-05, 12_reg_dnn=0,
dnn_dropout=0, init_std=0.0001, seed=1024,
task="binary’, device="cpu’, dnn_use_bn=False,

dnn_activation="relu’, gpus=None)
Instantiates the Convolutional Click Prediction Model architecture.

Parameters

* linear_feature_columns — An iterable containing all the features used by linear part
of the model.

* dnn_feature_columns — An iterable containing all the features used by deep part of
the model.

* conv_kernel_width - list,list of positive integer or empty list,the width of filter in each
conv layer.

* conv_filters — listlist of positive integer or empty list,the number of filters in each
conv layer.

* dnn_hidden_units — list,list of positive integer or empty list, the layer number and
units in each layer of DNN.

* 12_reg_linear —float. L2 regularizer strength applied to linear part

* 12 reg_embedding - float. L2 regularizer strength applied to embedding vector

* 12_reg_dnn — float. L2 regularizer strength applied to DNN

* dnn_dropout —float in [0,1), the probability we will drop out a given DNN coordinate.
* init_std - float,to use as the initialize std of embedding vector

* seed - integer ,to use as random seed.

* task —str, "binary" for binary logloss or "regression" for regression loss

¢ device —str, "cpu" or "cuda:0"

* gpus - list of int or torch.device for multiple gpus. If None, run on device. gpus[0] should
be the same gpu with device.

Returns A PyTorch model instance.

forward (X)
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks
while the latter silently ignores them.

2.6.3 deepctr_torch.models.pnn module

Author: Weichen Shen,weichenswc@ 163.com

40 Chapter 2. DisscussionGroup

DeepCTR-Torch Documentation, Release 0.2.9

Reference: [1] Qu Y, Cai H, Ren K, et al. Product-based neural networks for user response prediction[C]//Data
Mining (ICDM), 2016 IEEE 16th International Conference on. IEEE, 2016: 1149-1154.(https://arxiv.org/pdf/
1611.00144.pdf)

class deepctr_torch.models.pnn.PNN (dnn_feature_columns, dnn_hidden_units=(128,
128), [2_reg_embedding=1e-05, 12_reg_dnn=0,
init_std=0.0001, seed=1024, dnn_dropout=0,
dnn_activation="relu’, use_inner=True,

use_outter=False, kernel_type="mat’, task=binary’,
device="cpu’, gpus=None)
Instantiates the Product-based Neural Network architecture.

Parameters

* dnn_feature_columns — An iterable containing all the features used by deep part of
the model.

* dnn_hidden_units — list,list of positive integer or empty list, the layer number and
units in each layer of deep net

* 12_reg_embedding - float . L2 regularizer strength applied to embedding vector

* 12_reg_dnn - float. L2 regularizer strength applied to DNN

* init_std - float,to use as the initialize std of embedding vector

* seed - integer ,to use as random seed.

* dnn_dropout — float in [0,1), the probability we will drop out a given DNN coordinate.
e dnn_activation — Activation function to use in DNN

* use_inner - bool,whether use inner-product or not.

* use_outter — bool,whether use outter-product or not.

* kernel_type - str,kernel_type used in outter-product,canbe 'mat "', 'vec' or 'num'
* task —str, "binary" for binary logloss or "regression" for regression loss

* device —str, "cpu" or "cuda:0"

* gpus - list of int or torch.device for multiple gpus. If None, run on device. gpus[0] should
be the same gpu with device.

Returns A PyTorch model instance.

forward (X)
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks
while the latter silently ignores them.

2.6.4 deepctr_torch.models.wdl module

Author: Weichen Shen,weichenswc@ 163.com

2.6. DeepCTR-Torch Models API 41

https://arxiv.org/pdf/1611.00144.pdf
https://arxiv.org/pdf/1611.00144.pdf

DeepCTR-Torch Documentation, Release 0.2.9

Reference: [1] Cheng H T, Koc L, Harmsen J, et al. Wide & deep learning for recommender systems[C]//Proceedings
of the 1st Workshop on Deep Learning for Recommender Systems. ACM, 2016: 7-10.(https://arxiv.org/pdf/

1606.07792.pdf)
class deepctr_torch.models.wdl.WDL (linear_feature_columns, dnn_feature_columns,
dnn_hidden_units=(256, 128), [2_reg_linear=1e-
05, 12_reg_embedding=1e-05, 12_reg_dnn=0,
init_std=0.0001, seed=1024, dnn_dropout=0,

dnn_activation="relu’, dnn_use_bn=False, task="binary’,
device="cpu’, gpus=None)
Instantiates the Wide&Deep Learning architecture.

Parameters

* linear_ feature_columns — An iterable containing all the features used by linear part
of the model.

* dnn_feature_columns — An iterable containing all the features used by deep part of
the model.

* dnn_hidden_units - listlist of positive integer or empty list, the layer number and
units in each layer of DNN

* 12_reg_linear —float. L2 regularizer strength applied to wide part

* 12_reg_embedding — float. L2 regularizer strength applied to embedding vector

* 12_reg_dnn —float. L2 regularizer strength applied to DNN

* init_std - float,to use as the initialize std of embedding vector

* seed - integer ,to use as random seed.

* dnn_dropout — float in [0,1), the probability we will drop out a given DNN coordinate.
* dnn_activation — Activation function to use in DNN

* task —str, "binary" for binary logloss or "regression" for regression loss

* device —str, "cpu" or "cuda:0"

* gpus - list of int or torch.device for multiple gpus. If None, run on device. gpus[0] should
be the same gpu with device.

Returns A PyTorch model instance.

forward (X)
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks
while the latter silently ignores them.

2.6.5 deepctr_torch.models.deepfm module

Author: Weichen Shen,weichenswc@ 163.com

Reference: [1] Guo H, Tang R, Ye Y, et al. Deepfm: a factorization-machine based neural network for ctr predic-
tion[J]. arXiv preprint arXiv:1703.04247, 2017.(https://arxiv.org/abs/1703.04247)

42 Chapter 2. DisscussionGroup

https://arxiv.org/pdf/1606.07792.pdf
https://arxiv.org/pdf/1606.07792.pdf

DeepCTR-Torch Documentation, Release 0.2.9

class deepctr_torch.models.deepfm.DeepFM (linear_feature_columns, dnn_feature_columns,
use_fm=True, dnn_hidden_units=(256, 128),
12_reg_linear=1e-05, 12_reg_embedding=1e-05,
[2_reg_dnn=0, init_std=0.0001, seed=1024,

dnn_dropout=0, dnn_activation="relu’,
dnn_use_bn=False, task="binary’, device="cpu’,
gpus=None)

Instantiates the DeepFM Network architecture.
Parameters

* linear_feature_columns — An iterable containing all the features used by linear part
of the model.

* dnn_feature_columns — An iterable containing all the features used by deep part of
the model.

* use_fm - bool,use FM part or not

* dnn_hidden_units - list,list of positive integer or empty list, the layer number and
units in each layer of DNN

* 12_reg linear —float. L2 regularizer strength applied to linear part

* 12_reg_embedding — float. L2 regularizer strength applied to embedding vector

* 12_reg_dnn —float. L2 regularizer strength applied to DNN

* init_std - float,to use as the initialize std of embedding vector

* seed - integer ,to use as random seed.

* dnn_dropout —float in [0,1), the probability we will drop out a given DNN coordinate.
e dnn_activation — Activation function to use in DNN

¢ dnn_use_bn — bool. Whether use BatchNormalization before activation or not in DNN
* task —str, "binary" for binary logloss or "regression" for regression loss

* device —str, "cpu" or "cuda:0"

* gpus - list of int or torch.device for multiple gpus. If None, run on device. gpus[0] should
be the same gpu with device.

Returns A PyTorch model instance.

forward (X)
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks
while the latter silently ignores them.

2.6.6 deepctr_torch.models.mir module

Author: Wutong Zhang Weichen Shen,weichenswc@ 163.com

Reference: [1] Gai K, Zhu X, Li H, et al. Learning Piece-wise Linear Models from Large Scale Data for Ad Click
Prediction[J]. arXiv preprint arXiv:1704.05194, 2017.(https://arxiv.org/abs/1704.05194)

2.6. DeepCTR-Torch Models API 43

DeepCTR-Torch Documentation, Release 0.2.9

class deepctr_torch.models.mlr.MLR (region_feature_columns, base_feature_columns=None,
bias_feature_columns=None, region_num=4,
12_reg_linear=1e-05, init_std=0.0001, seed=1024,
task="binary’, device="cpu’, gpus=None)
Instantiates the Mixed Logistic Regression/Piece-wise Linear Model.

Parameters

* region_feature_columns — An iterable containing all the features used by region
part of the model.

* base_feature_columns — An iterable containing all the features used by base part of
the model.

* region_num - integer > 1,indicate the piece number

* 12 _reg linear —float. L2 regularizer strength applied to weight

* init_std - float,to use as the initialize std of embedding vector

* seed - integer ,to use as random seed.

* task —str, "binary" for binary logloss or "regression" for regression loss

* bias feature columns — An iterable containing all the features used by bias part of
the model.

* device —str, "cpu" or "cuda:0"

* gpus - list of int or torch.device for multiple gpus. If None, run on device. gpus[0] should
be the same gpu with device.

Returns A PyTorch model instance.

forward (X)
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks
while the latter silently ignores them.

2.6.7 deepctr_torch.models.nfm module

Author: Weichen Shen,weichenswc@ 163.com

Reference: [1] He X, Chua T S. Neural factorization machines for sparse predictive analytics|C]//Proceedings of
the 40th International ACM SIGIR conference on Research and Development in Information Retrieval. ACM,
2017: 355-364. (https://arxiv.org/abs/1708.05027)

class deepctr_torch.models.nfm.NFM (linear_feature_columns, dnn_feature_columns,
dnn_hidden_units=(128, 128), 12_reg_embedding=1e-05,
12_reg_linear=1e-05, 12_reg_dnn=0, init_std=0.0001,

seed=1024, bi_dropout=0, dnn_dropout=0,
dnn_activation="relu’, task="binary’, device="cpu’,
gpus=None)

Instantiates the NFM Network architecture.

Parameters

44 Chapter 2. DisscussionGroup

https://arxiv.org/abs/1708.05027

DeepCTR-Torch Documentation, Release 0.2.9

* linear_feature_columns — An iterable containing all the features used by linear part
of the model.

* dnn_feature_columns — An iterable containing all the features used by deep part of
the model.

* dnn_hidden_units — list,list of positive integer or empty list, the layer number and
units in each layer of deep net

* 12_reg_embedding - float. L2 regularizer strength applied to embedding vector
* 12_reg linear —float. L2 regularizer strength applied to linear part.

* 12_reg_dnn —float . L2 regularizer strength applied to DNN

* init_std - float,to use as the initialize std of embedding vector

* seed - integer ,to use as random seed.

* biout_dropout — When not None, the probability we will drop out the output of Biln-
teractionPooling Layer.

* dnn_dropout — float in [0,1), the probability we will drop out a given DNN coordinate.
* dnn_activation — Activation function to use in deep net

* task —str, "binary" for binary logloss or "regression" for regression loss

* device —str, "cpu" or "cuda:0"

* gpus - list of int or torch.device for multiple gpus. If None, run on device. gpus[0] should
be the same gpu with device.

Returns A PyTorch model instance.

forward (X)
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks

while the latter silently ignores them.

2.6.8 deepctr_torch.models.afm module

Author: Weichen Shen,weichenswc@ 163.com

Reference: [1] Xiao J, Ye H, He X, et al. Attentional factorization machines: Learning the weight of feature interac-

tions via attention networks[J]. arXiv preprint arXiv:1708.04617, 2017. (https://arxiv.org/abs/1708.04617)

class deepctr_torch.models.afm.AFM (linear_feature_columns, dnn_feature_columns,
use_attention=True, attention_factor=S8,
12_reg_linear=1e-05, [2_reg_embedding=1e-05,

12_reg_att=1e-05, afm_dropout=0, init_std=0.0001,
seed=1024, task="binary’, device="cpu’, gpus=None)
Instantiates the Attentional Factorization Machine architecture.

Parameters

* linear feature_columns — An iterable containing all the features used by linear part
of the model.

2.6. DeepCTR-Torch Models API

45

DeepCTR-Torch Documentation, Release 0.2.9

* dnn_feature_columns — An iterable containing all the features used by deep part of
the model.

* use_attention - bool,whether use attention or not,if set to False.it is the same as
standard Factorization Machine

* attention_factor — positive integer,units in attention net

* 12_reg_linear —float. L2 regularizer strength applied to linear part

* 12 reg_embedding - float. L2 regularizer strength applied to embedding vector
* 12_reg_att —float. L2 regularizer strength applied to attention net

* afm_dropout —float in [0,1), Fraction of the attention net output units to dropout.
* init_std - float,to use as the initialize std of embedding vector

* seed - integer ,to use as random seed.

* task —str, "binary" for binary logloss or "regression" for regression loss

¢ device —str, "cpu" or "cuda:0"

* gpus - list of int or torch.device for multiple gpus. If None, run on device. gpus[0] should
be the same gpu with device.

Returns A PyTorch model instance.

forward (X)
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks
while the latter silently ignores them.

2.6.9 deepctr_torch.models.dch module

Author: chen_kkkk, bgasdo36977 @gmail.com
zanshuxun, zanshuxun @aliyun.com

Reference: [1] Wang R, Fu B, Fu G, et al. Deep & cross network for ad click predictions[C]//Proceedings of the
ADKDD’17. ACM, 2017: 12. (https://arxiv.org/abs/1708.05123)

[2] Wang R, Shivanna R, Cheng D Z, et al. DCN-M: Improved Deep & Cross Network for Feature Cross
Learning in Web-scale Learning to Rank Systems[J]. 2020. (https://arxiv.org/abs/2008.13535)

class deepctr_torch.models.dcn.DCN (linear_feature_columns, dnn_feature_columns,
cross_num=2, cross_parameterization="vector’,
dnn_hidden_units=(128, 128), [2_reg_linear=1e-
05, [2_reg_embedding=1e-05, [2_reg_cross=1Ie-
05, 12_reg_dnn=0, init_std=0.0001, seed=1024,

dnn_dropout=0, dnn_activation="relu’,
dnn_use_bn=Fualse, task="binary’, device="cpu’,
gpus=None)

Instantiates the Deep&Cross Network architecture. Including DCN-V (parameterization="vector’) and DCN-M
(parameterization="matrix’).

46 Chapter 2. DisscussionGroup

mailto:bgasdo36977@gmail.com
mailto:zanshuxun@aliyun.com
https://arxiv.org/abs/1708.05123
https://arxiv.org/abs/2008.13535

DeepCTR-Torch Documentation, Release 0.2.9

Parameters

* linear_ feature_columns — An iterable containing all the features used by linear part
of the model.

* dnn_feature_columns — An iterable containing all the features used by deep part of
the model.

* cross_num — positive integet,cross layer number

* cross_parameterization-str, "vector" or "matrix", how to parameterize the
cross network.

* dnn_hidden_units — list,list of positive integer or empty list, the layer number and
units in each layer of DNN

* 12_reg_embedding - float. L2 regularizer strength applied to embedding vector

* 12_reg cross —float. L2 regularizer strength applied to cross net

* 12_reg_dnn —float. L2 regularizer strength applied to DNN

* init_std - float,to use as the initialize std of embedding vector

* seed - integer ,to use as random seed.

* dnn_dropout —float in [0,1), the probability we will drop out a given DNN coordinate.
¢ dnn_use_bn — bool. Whether use BatchNormalization before activation or not DNN

* dnn_activation — Activation function to use in DNN

* task —str, "binary" for binary logloss or "regression" for regression loss

* device —str, "cpu" or "cuda:0"

* gpus - list of int or torch.device for multiple gpus. If None, run on device. gpus[0] should
be the same gpu with device.

Returns A PyTorch model instance.

forward (X)
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks
while the latter silently ignores them.

2.6.10 deepctr_torch.models.dcnmix module

Author: chen_kkkk, bgasdo36977 @gmail.com
zanshuxun, zanshuxun @aliyun.com

Reference: [1] Wang R, Fu B, Fu G, et al. Deep & cross network for ad click predictions[C]//Proceedings of the
ADKDD’17. ACM, 2017: 12. (https://arxiv.org/abs/1708.05123)

[2] Wang R, Shivanna R, Cheng D Z, et al. DCN-M: Improved Deep & Cross Network for Feature Cross
Learning in Web-scale Learning to Rank Systems|[J]. 2020. (https://arxiv.org/abs/2008.13535)

2.6. DeepCTR-Torch Models API 47

mailto:bgasdo36977@gmail.com
mailto:zanshuxun@aliyun.com
https://arxiv.org/abs/1708.05123
https://arxiv.org/abs/2008.13535

DeepCTR-Torch Documentation, Release 0.2.9

class deepctr_torch.models.dcnmix.DCNMix (linear_feature_columns, dnn_feature_columns,

cross_num=2, dnn_hidden_units=(128, 128),
[2_reg_linear=1e-05, [2_reg_embedding=1e-
05, 12_reg_cross=1e-05, 12_reg_dnn=0,
init_std=0.0001, seed=1024, dnn_dropout=0,
low_rank=32, num_experts=4,
dnn_activation="relu’, dnn_use_bn=Fualse,
task="binary’, device="cpu’, gpus=None)

Instantiates the DCN-Mix model.

Parameters

linear_feature_columns — An iterable containing all the features used by linear part
of the model.

dnn_feature_columns — An iterable containing all the features used by deep part of
the model.

cross_num — positive integet,cross layer number

dnn_hidden_units - listlist of positive integer or empty list, the layer number and
units in each layer of DNN

12_reg_embedding - float. L2 regularizer strength applied to embedding vector
12_reg_cross —float. L2 regularizer strength applied to cross net

12_reg_dnn —float. L2 regularizer strength applied to DNN

init_std - float,to use as the initialize std of embedding vector

seed - integer ,to use as random seed.

dnn_dropout — float in [0,1), the probability we will drop out a given DNN coordinate.
dnn_use_bn - bool. Whether use BatchNormalization before activation or not DNN
dnn_actiwvation — Activation function to use in DNN

low_rank — Positive integer, dimensionality of low-rank sapce.

num_experts — Positive integer, number of experts.

task - str, "binary" for binary logloss or "regression™ for regression loss
device —str, "cpu" or "cuda:0"

gpus - list of int or torch.device for multiple gpus. If None, run on device. gpus/0] should
be the same gpu with device.

Returns A PyTorch model instance.

forward (X)

Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks

while the latter silently ignores them.

48

Chapter 2. DisscussionGroup

DeepCTR-Torch Documentation, Release 0.2.9

2.6.11 deepctr_torch.models.din module

Author: Yuef Zhang

Reference: [1] Zhou G, Zhu X, Song C, et al. Deep interest network for click-through rate prediction[C]//Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2018:
1059-1068. (https://arxiv.org/pdf/1706.06978.pdf)

class deepctr_torch.models.din.DIN (dnn_feature_columns, history_feature_list,
dnn_use_bn=False, dnn_hidden_units=(256, 128),
dnn_activation="relu’, att_hidden_size=(64, 16),
att_activation="Dice’, att_weight_normalization=False,
12_reg_dnn=0.0, [2_reg_embedding=1e-06,
dnn_dropout=0, init_std=0.0001, seed=1024,

task="binary’, device="cpu’, gpus=None)

Instantiates the Deep Interest Network architecture.

Parameters

dnn_feature_columns — An iterable containing all the features used by deep part of
the model.

history_ feature_list - list,to indicate sequence sparse field

dnn_use_bn — bool. Whether use BatchNormalization before activation or not in deep
net

dnn_hidden units - listlist of positive integer or empty list, the layer number and
units in each layer of deep net

dnn_activation — Activation function to use in deep net

att_hidden_size —list,list of positive integer , the layer number and units in each layer
of attention net

att_actiwvation — Activation function to use in attention net

att_weight_normalization - bool. Whether normalize the attention score of local
activation unit.

12_reg_dnn —float. L2 regularizer strength applied to DNN

12_reg_embedding - float. L2 regularizer strength applied to embedding vector
dnn_dropout —float in [0,1), the probability we will drop out a given DNN coordinate.
init_std - float,to use as the initialize std of embedding vector

seed — integer ,to use as random seed.

task - str, "binary" for binary logloss or "regression" for regression loss
device —str, "cpu" or "cuda:0"

gpus - list of int or torch.device for multiple gpus. If None, run on device. gpus[0] should
be the same gpu with device.

Returns A PyTorch model instance.

forward (X)
Defines the computation performed at every call.

Should be overridden by all subclasses.

2.6. DeepCTR-Torch Models API

49

https://arxiv.org/pdf/1706.06978.pdf

DeepCTR-Torch Documentation, Release 0.2.9

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks
while the latter silently ignores them.

2.6.12 deepctr_torch.models.dien module

Author: Ze Wang,

wangze0801@126.com

Reference: [1] Zhou G, Mou N, Fan Y, et al. Deep Interest Evolution Network for Click-Through Rate Prediction[J].
arXiv preprint arXiv:1809.03672, 2018. (https://arxiv.org/pdf/1809.03672.pdf)

class deepctr_torch.models.dien.DIEN (dnn_feature_columns, history_feature_list,

gru_type="GRU’, use_negsampling=False, al-
pha=1.0, use_bn=False, dnn_hidden_units=(256, 128),
dnn_activation="relu’, att_hidden_units=(64, 16),
att_activation="relu’, att_weight_normalization=True,
12_reg_dnn=0, [2_reg_embedding=1e-06,
dnn_dropout=0, init_std=0.0001, seed=1024,
task="binary’, device="cpu’, gpus=None)

Instantiates the Deep Interest Evolution Network architecture.

Parameters

dnn_feature_columns — An iterable containing all the features used by deep part of
the model.

history_ feature_list - list,to indicate sequence sparse field

gru_type - str,can be GRU AIGRU AUGRU AGRU

use_negsampling — bool, whether or not use negtive sampling

alpha — float ,weight of auxiliary_loss

use_bn — bool. Whether use BatchNormalization before activation or not in deep net

dnn_hidden_units - listlist of positive integer or empty list, the layer number and
units in each layer of DNN

dnn_activation — Activation function to use in DNN

att_hidden units - listlist of positive integer , the layer number and units in each
layer of attention net

att_actiwvation — Activation function to use in attention net

att_weight_normalization — bool.Whether normalize the attention score of local
activation unit.

12_reg_dnn —float. L2 regularizer strength applied to DNN

12_reg_embedding - float. L2 regularizer strength applied to embedding vector
dnn_dropout — float in [0, 1), the probability we will drop out a given DNN coordinate.
init_std - float,to use as the initialize std of embedding vector

seed - integer ,to use as random seed.

task —str, "binary" for binary logloss or "regression" for regression loss

device —str, "cpu" or "cuda:0"

50

Chapter 2. DisscussionGroup

mailto:wangze0801@126.com

DeepCTR-Torch Documentation, Release 0.2.9

* gpus — list of int or torch.device for multiple gpus. If None, run on device. gpus[0] should
be the same gpu with device.

Returns A PyTorch model instance.

forward (X)
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks
while the latter silently ignores them.

class deepctr_torch.models.dien.InterestEvolving (input_size, gru_type="GRU’,
use_neg=False, init_std=0.001,
att_hidden_size=(64, 16),

att_activation="sigmoid’,
att_weight_normalization="False)

forward (query, keys, keys_length, mask=None)
query: 2D tensor, [B, H] keys: (masked_interests), 3D tensor, [b, T, H] keys_length: 1D tensor, [B]

outputs: 2D tensor, [B, H]

class deepctr_torch.models.dien.InterestExtractor (input_size, use_neg=False,
init_std=0.001, device="cpu’)

forward (keys, keys_length, neg_keys=None)
keys: 3D tensor, [B, T, H] keys_length: 1D tensor, [B] neg_keys: 3D tensor, [B, T, H]

masked_interests: 2D tensor, [b, H] aux_loss: [1]

2.6.13 deepctr_torch.models.xdeepfm module

Author: Wutong Zhang

Reference: [1] Guo H, Tang R, Ye Y, et al. Deepfm: a factorization-machine based neural network for ctr predic-
tion[J]. arXiv preprint arXiv:1703.04247, 2017.(https://arxiv.org/abs/1703.04247)

class deepctr_torch.models.xdeepfm.xDeepFM (linear_feature_columns,
dnn_feature_columns,
dnn_hidden_units=(256, 256),
cin_layer_size=(256, 128),
cin_split_half=True, cin_activation="relu’,
12_reg_linear=1e-05, 12_reg_embedding=1e-
05, 12_reg_dnn=0, 12_reg_cin=0,
init_std=0.0001, seed=1024, dnn_dropout=0,
dnn_activation="relu’, dnn_use_bn=Fualse,
task="binary’, device="cpu’, gpus=None)
Instantiates the xDeepFM architecture.

Parameters

* linear feature columns - An iterable containing all the features used by linear part
of the model.

2.6. DeepCTR-Torch Models API 51

DeepCTR-Torch Documentation, Release 0.2.9

* dnn_feature_columns — An iterable containing all the features used by deep part of
the model.

* dnn_hidden_units - listlist of positive integer or empty list, the layer number and
units in each layer of deep net

* cin_layer_size - listlist of positive integer or empty list, the feature maps in each
hidden layer of Compressed Interaction Network

* cin_split_half - bool.if set to True, half of the feature maps in each hidden will
connect to output unit

* cin_activation - activation function used on feature maps

* 12_reg_linear —float. L2 regularizer strength applied to linear part

* 12_reg_embedding - L2 regularizer strength applied to embedding vector

* 12_reg dnn - L2 regularizer strength applied to deep net

* 12_reg_cin - L2 regularizer strength applied to CIN.

* init_std - float,to use as the initialize std of embedding vector

* seed - integer ,to use as random seed.

* dnn_dropout —float in [0,1), the probability we will drop out a given DNN coordinate.
e dnn_activation — Activation function to use in DNN

* dnn_use_bn - bool. Whether use BatchNormalization before activation or not in DNN
* task —str, "binary" for binary logloss or "regression" for regression loss

* device —str, "cpu" or "cuda:0"

* gpus - list of int or torch.device for multiple gpus. If None, run on device. gpus[0] should
be the same gpu with device.

Returns A PyTorch model instance.

forward (X)
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks
while the latter silently ignores them.

2.6.14 deepctr_torch.models.autoint module

Author: Weichen Shen,weichenswc@ 163.com

Reference: [1] Song W, Shi C, Xiao Z, et al. AutoInt: Automatic Feature Interaction Learning via Self-Attentive
Neural Networks[J]. arXiv preprint arXiv:1810.11921, 2018.(https://arxiv.org/abs/1810.11921)

52 Chapter 2. DisscussionGroup

DeepCTR-Torch Documentation, Release 0.2.9

class deepctr_torch.models.autoint .AutoInt (linear_feature_columns,

dnn_feature_columns, att_layer_num=3,
att_head_num=2, att_res=True,
dnn_hidden_units=(256, 128),
dnn_activation="relu’, [2_reg_dnn=0,
[2_reg_embedding=1e-05,

dnn_use_bn=Fualse, dnn_dropout=0,

init_std=0.0001, seed=1024, task=’binary’,
device="cpu’, gpus=None)

Instantiates the AutoInt Network architecture.

Parameters

linear_feature_columns — An iterable containing all the features used by linear part
of the model.

dnn_feature_columns — An iterable containing all the features used by deep part of
the model.

att_layer num - int.The Interactinglayer number to be used.
att_head num - int.The head number in multi-head self-attention network.
att_res — bool.Whether or not use standard residual connections before output.

dnn_hidden_units — listlist of positive integer or empty list, the layer number and
units in each layer of DNN

dnn_activation — Activation function to use in DNN

12_reg_dnn —float. L2 regularizer strength applied to DNN

12_reg_embedding - float. L2 regularizer strength applied to embedding vector
dnn_use_bn — bool. Whether use BatchNormalization before activation or not in DNN
dnn_dropout - float in [0,1), the probability we will drop out a given DNN coordinate.
init_std - float,to use as the initialize std of embedding vector

seed — integer ,to use as random seed.

task - str, "binary" for binary logloss or "regression" for regression loss
device —str, "cpu" or "cuda:0"

gpus — list of int or torch.device for multiple gpus. If None, run on device. gpus[0] should
be the same gpu with device.

Returns A PyTorch model instance.

forward (X)
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks
while the latter silently ignores them.

2.6. DeepCTR-Torch Models API

53

DeepCTR-Torch Documentation, Release 0.2.9

2.6.15 deepctr_torch.models.onn module

Author: Junyi Huo

Reference: [1] Yang Y, Xu B, Shen F, et al. Operation-aware Neural Networks for User Response Prediction[J]. arXiv
preprint arXiv:1904.12579, 2019. https://arxiv.org/pdf/1904.12579

class deepctr_torch.models.onn.ONN (linear_feature_columns, dnn_feature_columns,
dnn_hidden_units=(128, 128), 12_reg_embedding=1e-035,
12_reg_linear=1e-05, [2_reg_dnn=0, dnn_dropout=0,
init_std=0.0001, seed=1024, dnn_use_bn=Fualse,
dnn_activation="relu’, task="binary’, device="cpu’,
gpus=None)
Instantiates the Operation-aware Neural Networks architecture.

Parameters

* linear_ feature_columns — An iterable containing all the features used by linear part
of the model.

* dnn_feature_columns — An iterable containing all the features used by deep part of
the model.

* dnn_hidden_units — list,list of positive integer or empty list, the layer number and
units in each layer of deep net

* 12_reg_embedding - float. L2 regularizer strength applied to embedding vector

* 12_reg linear —float. L2 regularizer strength applied to linear part.

* 12_reg_dnn —float . L2 regularizer strength applied to DNN

* init_std - float,to use as the initialize std of embedding vector

* seed - integer ,to use as random seed.

* dnn_dropout —float in [0,1), the probability we will drop out a given DNN coordinate.
¢ use_bn — bool,whether use bn after ffm out or not

* reduce_sum - bool,whether apply reduce_sum on cross vector

* task - str, "binary" for binary logloss or "regression" for regression loss

* device —str, "cpu" or "cuda:0"

* gpus - list of int or torch.device for multiple gpus. If None, run on device. gpus[0] should
be the same gpu with device.

Returns A PyTorch model instance.

forward (X)
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks
while the latter silently ignores them.

54 Chapter 2. DisscussionGroup

DeepCTR-Torch Documentation, Release 0.2.9

2.6.16 deepctr_torch.models.fibinet module

Author: Wutong Zhang

Reference: [1] Huang T, Zhang Z, Zhang J. FiBiNET: Combining Feature Importance and Bilinear feature Interaction
for Click-Through Rate Prediction[J]. arXiv preprint arXiv:1905.09433, 2019.

class deepctr_torch.models.fibinet .FiBiNET (linear_feature_columns,

dnn_feature_columns, bilin-
ear_type='interaction’, reduc-
tion_ratio=3, dnn_hidden_units=(128, 128),
12_reg_linear=1e-05, 12_reg_embedding=1e-

05, 12_reg_dnn=0, init_std=0.0001,
seed=1024, dnn_dropout=0,
dnn_activation="relu’, task="binary’, de-

vice="cpu’, gpus=None)

Instantiates the Feature Importance and Bilinear feature Interaction NETwork architecture.

Parameters

linear feature_columns — An iterable containing all the features used by linear part
of the model.

dnn_feature_columns — An iterable containing all the features used by deep part of
the model.

bilinear_type - strbilinear function type used in Bilinear Interaction Layer,can be
'all', 'each'or '"interaction'

reduction_ratio - integer in [1,inf), reduction ratio used in SENET Layer

dnn_hidden_units - listlist of positive integer or empty list, the layer number and
units in each layer of DNN

12_reg linear —float. L2 regularizer strength applied to wide part
12_reg_embedding - float. L2 regularizer strength applied to embedding vector
12_reg_dnn —float. L2 regularizer strength applied to DNN

init_std - float,to use as the initialize std of embedding vector

seed - integer ,to use as random seed.

dnn_dropout —float in [0,1), the probability we will drop out a given DNN coordinate.
dnn_activation — Activation function to use in DNN

task - str, "binary" for binary logloss or "regression" for regression loss
device —str, "cpu" or "cuda:0"

gpus - list of int or torch.device for multiple gpus. If None, run on device. gpus{0] should
be the same gpu with device.

Returns A PyTorch model instance.

forward (X)
Defines the computation performed at every call.

Should be overridden by all subclasses.

2.6. DeepCTR-Torch Models API

55

DeepCTR-Torch Documentation, Release 0.2.9

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks
while the latter silently ignores them.

2.6.17 deepctr_torch.models.ifm module

Author: zanshuxun, zanshuxun@aliyun.com

Reference: [1] YuY, Wang Z, Yuan B. An Input-aware Factorization Machine for Sparse Prediction[C]//IJCAI. 2019:
1466-1472.(https://www.ijcai.org/Proceedings/2019/0203.pdf)

class deepctr_torch.models.ifm.IFM (linear_feature_columns, dnn_feature_columns,
dnn_hidden_units=(256, 128), [2_reg_linear=1e-
05, 12_reg_embedding=1e-05, 12_reg_dnn=0,
init_std=0.0001, seed=1024, dnn_dropout=0,

dnn_activation="relu’, dnn_use_bn=Fualse, task="binary’,
device="cpu’, gpus=None)

Instantiates the IFM Network architecture.

Parameters

linear feature_columns — Aniterable containing all the features used by linear part
of the model.

dnn_feature_columns — An iterable containing all the features used by deep part of
the model.

dnn_hidden units - listlist of positive integer or empty list, the layer number and
units in each layer of DNN

12_reg_linear —float. L2 regularizer strength applied to linear part
12_reg_embedding - float. L2 regularizer strength applied to embedding vector
12_reg_dnn —float. L2 regularizer strength applied to DNN

init_std - float,to use as the initialize std of embedding vector

seed — integer ,to use as random seed.

dnn_dropout — float in [0, 1), the probability we will drop out a given DNN coordinate.
dnn_activation — Activation function to use in DNN

dnn_use_bn — bool. Whether use BatchNormalization before activation or not in DNN
task —str, "binary" for binary logloss or "regression" for regression loss
device —str, "cpu" or "cuda:0"

gpus - list of int or torch.device for multiple gpus. If None, run on device . gpus[0]
should be the same gpu with device .

Returns A PyTorch model instance.

forward (X)
Defines the computation performed at every call.

Should be overridden by all subclasses.

56

Chapter 2. DisscussionGroup

mailto:zanshuxun@aliyun.com
https://www.ijcai.org/Proceedings/2019/0203.pdf

DeepCTR-Torch Documentation, Release 0.2.9

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks
while the latter silently ignores them.

2.6.18 deepctr_torch.models.difm module

Author: zanshuxun, zanshuxun@aliyun.com

Reference: [1]Lu W, YuY, Chang Y, et al. A Dual Input-aware Factorization Machine for CTR Prediction[C]//IJCAL
2020: 3139-3145.(https://www.ijcai.org/Proceedings/2020/0434.pdf)

class deepctr_torch.models.difm.DIFM (linear_feature_columns, dnn_feature_columns,

att_head_num=4, att_res=True,
dnn_hidden_units=(256, 128), [2_reg_linear=1Ie-
05, 12_reg_embedding=1e-05, 12_reg_dnn=0,
init_std=0.0001, seed=1024, dnn_dropout=0,
dnn_activation="relu’, dnn_use_bn=Fualse,
task="binary’, device="cpu’, gpus=None)

Instantiates the DIFM Network architecture.

Parameters

linear_feature_columns — An iterable containing all the features used by linear part
of the model.

dnn_feature_columns — An iterable containing all the features used by deep part of
the model.

att_head_num - int. The head number in multi-head self-attention network.
att_res —bool. Whether or not use standard residual connections before output.

dnn_hidden_units - listlist of positive integer or empty list, the layer number and
units in each layer of DNN

12_reg_linear — float. L2 regularizer strength applied to linear part
12_reg_embedding - float. L2 regularizer strength applied to embedding vector
12_reg_dnn —float. L2 regularizer strength applied to DNN

init_std - float,to use as the initialize std of embedding vector

seed - integer ,to use as random seed.

dnn_dropout — float in [0, 1), the probability we will drop out a given DNN coordinate.
dnn_activation — Activation function to use in DNN

dnn_use_bn — bool. Whether use BatchNormalization before activation or not in DNN
task - str, "binary" for binary logloss or "regression" for regression loss
device —str, "cpu" or "cuda:0"

gpus - list of int or torch.device for multiple gpus. If None, run on device . gpus[0]
should be the same gpu with device .

Returns A PyTorch model instance.

2.6. DeepCTR-Torch Models API 57

mailto:zanshuxun@aliyun.com
https://www.ijcai.org/Proceedings/2020/0434.pdf

DeepCTR-Torch Documentation, Release 0.2.9

forward (X)
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks
while the latter silently ignores them.

2.6.19 deepctr_torch.models.multitask.sharedbottom module

Author: zanshuxun, zanshuxun@aliyun.com

Reference: [1] Ruder S. An overview of multi-task learning in deep neural networks[J]. arXiv preprint
arXiv:1706.05098, 2017.(https://arxiv.org/pdf/1706.05098.pdf)

class deepctr_torch.models.multitask.sharedbottom.SharedBottom (dnn_feature_columns,
bot-
tom_dnn_hidden_units=(256,
128),
tower_dnn_hidden_units=(64,
),
[2_reg_linear=1e-
05,
[2_reg_embedding=1e-
05,
12_reg_dnn=0,
init_std=0.0001,
seed=1024,
dnn_dropout=0,
dnn_activation="relu’,
dnn_use_bn=Fualse,
task_types=(’binary’,
‘binary’),
task_names=("ctr’,
‘ctevr’), de-
vice="cpu’,
gpus=None)

Instantiates the SharedBottom multi-task learning Network architecture.

Parameters

* dnn_feature_columns — An iterable containing all the features used by deep part of
the model.

* bottom_dnn_hidden_units — list, list of positive integer or empty list, the layer num-
ber and units in each layer of shared bottom DNN.

* tower_dnn_hidden_units —list, list of positive integer or empty list, the layer number
and units in each layer of task-specific DNN.

* 12_reg_linear —float, L2 regularizer strength applied to linear part
* 12_reg_embedding — float, L2 regularizer strength applied to embedding vector
* 12_reg_dnn —float, L2 regularizer strength applied to DNN

58 Chapter 2. DisscussionGroup

mailto:zanshuxun@aliyun.com

DeepCTR-Torch Documentation, Release 0.2.9

* init_std —float, to use as the initialize std of embedding vector

* seed - integer, to use as random seed.

* dnn_dropout —float in [0,1), the probability we will drop out a given DNN coordinate.
* dnn_actiwvation — Activation function to use in DNN

* dnn_use_bn — bool, Whether use BatchNormalization before activation or not in DNN

* task_types - list of str, indicating the loss of each tasks, "binary" for binary logloss
or "regression™" for regression loss. e.g. [‘binary’, ‘regression’]

* task_names — list of str, indicating the predict target of each tasks
¢ device —str, "cpu" or "cuda:0"

* gpus - list of int or torch.device for multiple gpus. If None, run on device. gpus[0] should
be the same gpu with device.

Returns A PyTorch model instance.

forward (X)
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks
while the latter silently ignores them.

2.6.20 deepctr_torch.models.multitask.esmm module

Author: zanshuxun, zanshuxun@aliyun.com

Reference: [1] Ma X, Zhao L, Huang G, et al. Entire space multi-task model: An effective approach for estimating
post-click conversion rate[C]//The 41st International ACM SIGIR Conference on Research & Development in
Information Retrieval. 2018.(https://dl.acm.org/doi/10.1145/3209978.3210104)

class deepctr_torch.models.multitask.esmm.ESMM (dnn_feature_columns,
tower_dnn_hidden_units=(256,

128), [2_reg_linear=1e-05,
12_reg_embedding=1e-05,

12_reg_dnn=0, init_std=0.0001,
seed=1024, dnn_dropout=0,

dnn_activation="relu’,
dnn_use_bn=False,
task_types=(’binary’, ’binary’),
task_names=("ctr’, ‘ctevr’), de-
vice="cpu’, gpus=None)

Instantiates the Entire Space Multi-Task Model architecture.

Parameters

* dnn_feature_columns — An iterable containing all the features used by deep part of
the model.

* tower_dnn_hidden_units —list, list of positive integer or empty list, the layer number
and units in each layer of task-specific DNN.

2.6. DeepCTR-Torch Models API 59

mailto:zanshuxun@aliyun.com
https://dl.acm.org/doi/10.1145/3209978.3210104

DeepCTR-Torch Documentation, Release 0.2.9

2.6.21 deepctr_torch.models.multitask.mmoe module

Returns

forward (X)

12_reg_linear —float, L2 regularizer strength applied to linear part.
12_reg_embedding - float, L2 regularizer strength applied to embedding vector.
12_reg_dnn —float, L2 regularizer strength applied to DNN.

init_std - float, to use as the initialize std of embedding vector.

seed — integer, to use as random seed.

dnn_dropout — float in [0, 1), the probability we will drop out a given DNN coordinate.
dnn_activation — Activation function to use in DNN.

dnn_use_bn — bool, Whether use BatchNormalization before activation or not in DNN.

task_types - list of str, indicating the loss of each tasks, "binary" for binary logloss
or "regression" for regression loss. e.g. [‘binary’, ‘regression’].

task_names - list of str, indicating the predict target of each tasks.
device —str, "cpu" or "cuda:0".

gpus - list of int or torch.device for multiple gpus. If None, run on device. gpus{0] should
be the same gpu with device.

A PyTorch model instance.

Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks

while the latter silently ignores them.

Author: zanshuxun, zanshuxun@aliyun.com

Reference: [1] Jiaqi Ma, Zhe Zhao, Xinyang Yi, et al. Modeling Task Relationships in Multi-task Learning with
Multi-gate Mixture-of-Experts[C] (https://dl.acm.org/doi/10.1145/3219819.3220007)

class deepctr_torch.models.multitask.mmoe.MMOE (dnn_feature_columns, num_experts=3,

expert_dnn_hidden_units=(256,

128), gate_dnn_hidden_units=(64,
), tower_dnn_hidden_units=(64,
), [2_reg_linear=1e-05,
12_reg_embedding=1e-05,

12_reg_dnn=0, init_std=0.0001,
seed=1024, dnn_dropout=0,

dnn_activation="relu’,
dnn_use_bn=False,
task_types=("binary’, ’binary’),
task_names=("ctr’, ‘ctevr’), de-
vice="cpu’, gpus=None)

Instantiates the Multi-gate Mixture-of-Experts architecture.

Parameters

60

Chapter 2. DisscussionGroup

mailto:zanshuxun@aliyun.com
https://dl.acm.org/doi/10.1145/3219819.3220007

DeepCTR-Torch Documentation, Release 0.2.9

* dnn_feature_columns — An iterable containing all the features used by deep part of
the model.

* num_experts — integer, number of experts.

* expert_dnn_hidden_units — list, list of positive integer or empty list, the layer num-
ber and units in each layer of expert DNN.

* gate_dnn_hidden_units - list, list of positive integer or empty list, the layer number
and units in each layer of gate DNN.

* tower_dnn_hidden_units - list, list of positive integer or empty list, the layer number
and units in each layer of task-specific DNN.

* 12_reg_linear —float, L2 regularizer strength applied to linear part.

* 12_reg_embedding - float, L2 regularizer strength applied to embedding vector.

* 12_reg_dnn —float, L2 regularizer strength applied to DNN.

* init_std —float, to use as the initialize std of embedding vector.

* seed - integer, to use as random seed.

* dnn_dropout —float in [0,1), the probability we will drop out a given DNN coordinate.
* dnn_activation — Activation function to use in DNN.

e dnn_use_bn — bool, Whether use BatchNormalization before activation or not in DNN.

* task_types — list of str, indicating the loss of each tasks, "binary" for binary logloss,
"regression™" for regression loss. e.g. [‘binary’, ‘regression’].

* task_names — list of str, indicating the predict target of each tasks.
* device —str, "cpu" or "cuda:0".

* gpus - list of int or torch.device for multiple gpus. If None, run on device. gpus[0] should
be the same gpu with device.

Returns A PyTorch model instance.

forward (X)
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks
while the latter silently ignores them.

2.6.22 deepctr_torch.models.multitask.ple module

Author: zanshuxun, zanshuxun@aliyun.com

Reference: [1] Tang H, Liu J, Zhao M, et al. Progressive layered extraction (ple): A novel multi-task learning
(mtl) model for personalized recommendations[C]//Fourteenth ACM Conference on Recommender Systems.
2020.(https://dl.acm.org/doi/10.1145/3383313.3412236)

2.6. DeepCTR-Torch Models API 61

mailto:zanshuxun@aliyun.com
https://dl.acm.org/doi/10.1145/3383313.3412236

DeepCTR-Torch Documentation, Release 0.2.9

class deepctr_torch.models.multitask.ple.PLE (dnn_feature_columns,

shared_expert_num=1, spe-
cific_expert_num=1, num_levels=2,
expert_dnn_hidden_units=(256,

128), gate_dnn_hidden_units=(64,
), tower_dnn_hidden_units=(64,
), [2_reg_linear=1e-05,
12_reg_embedding=1e-05, [2_reg_dnn=0,
init_std=0.0001, seed=1024,
dnn_dropout=0, dnn_activation="relu’,
dnn_use_bn=False, task_types=(’binary’,
’binary’), task_names=('ctr’, ’ctcvr’),
device="cpu’, gpus=None)

Instantiates the multi level of Customized Gate Control of Progressive Layered Extraction architecture.

Parameters

* dnn_feature_columns — An iterable containing all the features used by deep part of
the model.

* shared_expert_num - integer, number of task-shared experts.
* specific_expert_num - integer, number of task-specific experts.
* num_levels — integer, number of CGC levels.

* expert_dnn_hidden_units - list, list of positive integer or empty list, the layer num-
ber and units in each layer of expert DNN.

* gate_dnn_hidden_units - list, list of positive integer or empty list, the layer number
and units in each layer of gate DNN.

* tower_dnn_hidden_units —list, list of positive integer or empty list, the layer number
and units in each layer of task-specific DNN.

* 12_reg_linear - float, L2 regularizer strength applied to linear part.

* 12_reg_embedding — float, L2 regularizer strength applied to embedding vector.

* 12_reg_dnn —float, L2 regularizer strength applied to DNN.

* init_std - float, to use as the initialize std of embedding vector.

* seed - integer, to use as random seed.

* dnn_dropout — float in [0,1), the probability we will drop out a given DNN coordinate.
* dnn_activation — Activation function to use in DNN.

* dnn_use_bn — bool, Whether use BatchNormalization before activation or not in DNN.

* task_types - list of str, indicating the loss of each tasks, "binary" for binary logloss,
"regression" for regression loss. e.g. [‘binary’, ‘regression’]

* task_names - list of str, indicating the predict target of each tasks.
* device —str, "cpu" or "cuda:0".

* gpus — list of int or torch.device for multiple gpus. If None, run on device. gpus[0] should
be the same gpu with device.

Returns A PyTorch model instance.

forward (X)
Defines the computation performed at every call.

62 Chapter 2. DisscussionGroup

DeepCTR-Torch Documentation, Release 0.2.9

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks
while the latter silently ignores them.

2.7 DeepCTR-Torch Layers API

2.7.1 deepctr_torch.layers.core module

class deepctr_torch.layers.core.Conv2dSame (in_channels, out_channels, kernel_size,
stride=1, padding=0, dilation=1, groups=1,
bias=True)

Tensorflow like ‘SAME’ convolution wrapper for 2D convolutions

forward (x)
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks
while the latter silently ignores them.

class deepctr_torch.layers.core.DNN (inputs_dim, hidden_units, activation="relu’, 12_reg=0,
dropout_rate=0, use_bn=Fualse, init_std=0.0001,

dice_dim=3, seed=1024, device="cpu’)
The Multi Layer Percetron

Input shape

e nD tensor with shape: (batch_size, ..., input_dim). The most common situation would
be a 2D input with shape (batch_size, input_dim).

Output shape

* nD tensor with shape: (batch_size, ..., hidden_size[-1]). For instance, for a 2D
input with shape (batch_size, input_dim), the output would have shape (batch_size,
hidden_size[-1]).

Arguments
* inputs_dim: input feature dimension.
* hidden_units:list of positive integer, the layer number and units in each layer.
* activation: Activation function to use.
* 12_reg: float between 0 and 1. L2 regularizer strength applied to the kernel weights matrix.
* dropout_rate: float in [0,1). Fraction of the units to dropout.
¢ use_bn: bool. Whether use BatchNormalization before activation or not.

* seed: A Python integer to use as random seed.

2.7. DeepCTR-Torch Layers API 63

DeepCTR-Torch Documentation, Release 0.2.9

forward (inputs)
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks
while the latter silently ignores them.

class deepctr_torch.layers.core.LocalActivationUnit (hidden_units=(64, 32), em-

bedding_dim=4, activa-
tion="sigmoid’, dropout_rate=0,
dice_dim=3, 12_reg=0,

use_bn=False)

The LocalActivationUnit used in DIN with which the representation of user interests varies adaptively
given different candidate items.

Input shape

e A list of two 3D tensor with shape: (batch_size, 1, embedding_size) and
(batch_size, T, embedding_size)

QOutput shape
* 3D tensor with shape: (batch_size, T, 1).

Arguments
* hidden_units:list of positive integer, the attention net layer number and units in each layer.
* activation: Activation function to use in attention net.

* 12_reg: float between 0 and 1. L2 regularizer strength applied to the kernel weights matrix of attention
net.

* dropout_rate: float in [0,1). Fraction of the units to dropout in attention net.
¢ use_bn: bool. Whether use BatchNormalization before activation or not in attention net.
* seed: A Python integer to use as random seed.

References

e [Zhou G, Zhu X, Song C, et al. Deep interest network for click-through rate predic-
tion[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining. ACM, 2018: 1059-1068.](https://arxiv.org/pdf/1706.06978.pdf)

forward (query, user_behavior)
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks
while the latter silently ignores them.

class deepctr_torch.layers.core.PredictionLayer (fask=’binary’, use_bias=True,
**kwargs)

Arguments

64 Chapter 2. DisscussionGroup

https://arxiv.org/pdf/1706.06978.pdf

DeepCTR-Torch Documentation, Release 0.2.9

e task: str, "binary" for binary logloss or "regression™" for regression loss
* use_bias: bool. Whether add bias term or not.

forward (X)
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks
while the latter silently ignores them.

2.7.2 deepctr_torch.layers.interaction module

class deepctr_torch.layers.interaction.AFMLayer (in_features, attention_factor=4,
12_reg_w=0, dropout_rate=0,
seed=1024, device="cpu’)
Attentonal Factorization Machine models pairwise (order-2) feature interactions without linear term and bias.

Input shape

* A list of 3D tensor with shape: (batch_size, 1, embedding_size).
Output shape

* 2D tensor with shape: (batch_size, 1).
Arguments

* in_features : Positive integer, dimensionality of input features.

« attention_factor : Positive integer, dimensionality of the
attention network output space.

* 12_reg w: float between O and 1. L2 regularizer strength
applied to attention network.

* dropout_rate : float between in [0,1). Fraction of the attention net output units to dropout.

* seed : A Python integer to use as random seed.

References
* [Attentional Factorization Machines : Learning the Weight of Feature
Interactions via Attention Networks](https://arxiv.org/pdf/1708.04617.pdf)

forward (inputs)
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks
while the latter silently ignores them.

2.7. DeepCTR-Torch Layers API 65

https://arxiv.org/pdf/1708.04617.pdf

DeepCTR-Torch Documentation, Release 0.2.9

class deepctr_torch.layers.interaction.BiInteractionPooling
Bi-Interaction Layer used in Neural FM,compress the pairwise element-wise product of features into one single

vector.
Input shape
* A 3D tensor with shape: (batch_size, field_size,embedding_size).
Output shape
* 3D tensor with shape: (batch_size, 1, embedding_size).
References

* [He X, Chua T S. Neural factorization machines for sparse predictive analyt-
ics[C]//Proceedings of the 40th International ACM SIGIR conference on Research and
Development in Information Retrieval. ACM, 2017: 355-364.](http://arxiv.org/abs/1708.
05027)

forward (inputs)
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks
while the latter silently ignores them.

class deepctr_torch.layers.interaction.BilinearInteraction (filed_size, embed-
ding_size, bilin-
ear_type='interaction’,
seed=1024, de-
vice="cpu’)

BilinearInteraction Layer used in FiBiNET.
Input shape
* A list of 3D tensor with shape: (batch_size, filed_size, embedding_size).
Output shape

* 3D tensor with shape: (batch_size, filed_sizex (filed_size-1)/2,
embedding_size).

Arguments
« filed_size : Positive integer, number of feature groups.
» embedding_size : Positive integer, embedding size of sparse features.
* bilinear_type : String, types of bilinear functions used in this layer.
* seed : A Python integer to use as random seed.
References

* [FiBiNET: Combining Feature Importance and Bilinear feature Interaction for Click-Through
Rate Prediction

Tongwen](https://arxiv.org/pdf/1905.09433.pdf)

66 Chapter 2. DisscussionGroup

http://arxiv.org/abs/1708.05027
http://arxiv.org/abs/1708.05027
https://arxiv.org/pdf/1905.09433.pdf

DeepCTR-Torch Documentation, Release 0.2.9

forward (inputs)
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks
while the latter silently ignores them.

class deepctr_torch.layers.interaction.CIN (field_size, layer_size=(128, 128), activa-
tion="relu’, split_half=True, [2_reg=1e-05,

seed=1024, device="cpu’)
Compressed Interaction Network used in xDeepFM. Input shape

* 3D tensor with shape: (batch_size,field_size,embedding_size).

Output shape

e 2D tensor with shape: (batch_size, featuremap_num) featuremap_num
= sum(self.layer_size[:-1]) // 2 + self.layer_size[-1] if
split_half=True,else sum(layer_size) .

Arguments
« filed_size : Positive integer, number of feature groups.
* layer_size : list of int.Feature maps in each layer.
* activation : activation function name used on feature maps.
« split_half : bool.if set to False, half of the feature maps in each hidden will connect to output unit.
* seed : A Python integer to use as random seed.
References

e [Lian J, Zhou X, Zhang F, et al xDeepFM: Combining Explicit and Implicit Fea-
ture Interactions for Recommender Systems[J]. arXiv preprint arXiv:1803.05170, 2018.]
(https://arxiv.org/pdf/1803.05170.pdf)

forward (inputs)
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks
while the latter silently ignores them.

class deepctr_torch.layers.interaction.ConvLayer (field_size, conv_kernel_width,
conv_filters, device="cpu’)
Conv Layer used in CCPM.
Input shape

* A list of N 3D tensor with shape: (batch_size, 1, filed_size, embedding_size).

Output shape

2.7. DeepCTR-Torch Layers API 67

DeepCTR-Torch Documentation, Release 0.2.9

e A list of N 3D tensor with shape: (batch_size,last_filters,pooling_size,
embedding_size).

Arguments
« filed_size : Positive integer, number of feature groups.
* conv_kernel_width: list. list of positive integer or empty list,the width of filter in each conv layer.
¢ conv_filters: list. list of positive integer or empty list,the number of filters in each conv layer.
Reference:

eLiu Q Yu FF Wu S, et al A convolutional click prediction model[C]//Proceedings

of the 24th ACM International on Conference on Information and Knowledge Manage-
ment. ACM, 2015: 1743-1746.(http://ir.ia.ac.cn/bitstream/173211/12337/1/A%20Convolutional %
20Click%?20Prediction%20Model.pdf)

forward (inputs)
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks
while the latter silently ignores them.

class deepctr_torch.layers.interaction.CrossNet (in_features, layer_num=2, parame-
terization="vector’, seed=1024, de-
vice="cpu’)
The Cross Network part of Deep&Cross Network model, which leans both low and high degree cross feature.

Input shape
* 2D tensor with shape: (batch_size, units).
Output shape
* 2D tensor with shape: (batch_size, units).
Arguments
* in_features : Positive integer, dimensionality of input features.
* input_feature_num: Positive integer, shape(Input tensor)[-1]
* layer_num: Positive integer, the cross layer number

* parameterization: string, "vector" or "matrix" , way to parameterize the cross net-
work.

* 12_reg: float between 0 and 1. L2 regularizer strength applied to the kernel weights matrix
* seed: A Python integer to use as random seed.
References

* [Wang R, Fu B, Fu G, et al. Deep & cross network for ad click predictions[C]//Proceedings
of the ADKDD’17. ACM, 2017: 12.](https://arxiv.org/abs/1708.05123)

* [Wang R, Shivanna R, Cheng D Z, et al. DCN-M: Improved Deep & Cross Network for
Feature Cross Learning in Web-scale Learning to Rank Systems[J]. 2020.](https://arxiv.org/
abs/2008.13535)

68 Chapter 2. DisscussionGroup

http://ir.ia.ac.cn/bitstream/173211/12337/1/A%20Convolutional%20Click%20Prediction%20Model.pdf
http://ir.ia.ac.cn/bitstream/173211/12337/1/A%20Convolutional%20Click%20Prediction%20Model.pdf
https://arxiv.org/abs/1708.05123
https://arxiv.org/abs/2008.13535
https://arxiv.org/abs/2008.13535

DeepCTR-Torch Documentation, Release 0.2.9

forward (inputs)
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks
while the latter silently ignores them.

class deepctr_torch.layers.interaction.CrossNetMix (in_features, low_rank=32,
num_experts=4, layer_num=2,
device="cpu’)
The Cross Network part of DCN-Mix model, which improves DCN-M by: 1 add MOE to learn feature interac-
tions in different subspaces 2 add nonlinear transformations in low-dimensional space Input shape

* 2D tensor with shape: (batch_size, units).

Output shape

e 2D tensor with shape: (batch_size, units).
Arguments

« in_features : Positive integer, dimensionality of input features.

* low_rank : Positive integer, dimensionality of low-rank sapce.

* num_experts : Positive integer, number of experts.

* layer_num: Positive integer, the cross layer number

¢ device: str, e.g. "cpu" or "cuda:0"
References

¢ [Wang R, Shivanna R, Cheng D Z, et al. DCN-M: Improved Deep & Cross Network for Feature Cross

Learning in Web-scale Learning to Rank Systems[J]. 2020.](https://arxiv.org/abs/2008.13535)
forward (inputs)
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks
while the latter silently ignores them.

class deepctr_torch.layers.interaction.FM
Factorization Machine models pairwise (order-2) feature interactions without linear term and bias.

Input shape

* 3D tensor with shape: (batch_size, field_size,embedding_size).
Output shape

* 2D tensor with shape: (batch_size, 1).
References

¢ [Factorization Machines](https://www.csie.ntu.edu.tw/~b97053/paper/Rendle2010FM.pdf)

2.7. DeepCTR-Torch Layers API 69

https://arxiv.org/abs/2008.13535
https://www.csie.ntu.edu.tw/~b97053/paper/Rendle2010FM.pdf

DeepCTR-Torch Documentation, Release 0.2.9

forward (inputs)
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks
while the latter silently ignores them.

class deepctr_torch.layers.interaction.InnerProductlayer (reduce_sum=True,
device="cpu’)
InnerProduct Layer used in PNN that compute the element-wise product or inner product between feature vec-

tors.

Input shape

* alist of 3D tensor with shape: (batch_size, 1, embedding_size).
Output shape

* 3D tensor with shape: (batch_size, Nx(N-1)/2 ,1) if use reduce_sum. or 3D

tensor with shape:
(batch_size, Nx(N-1)/2, embedding_size) if notuse reduce_sum.

Arguments

* reduce_sum: bool. Whether return inner product or element-wise product
References

* [QuY, Cai H, Ren K, et al. Product-based neural networks for user response prediction[C]//

Data Mining (ICDM), 2016 IEEE 16th International Conference on. IEEE, 2016: 1149-1154.]
(https://arxiv.org/pdf/1611.00144.pdf)

forward (inputs)
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks
while the latter silently ignores them.

class deepctr_torch.layers.interaction.InteractinglLayer (embedding_size,
head_num=2,
use_res=True, scal-
ing=False, seed=1024,
device="cpu’)
A Layer used in Autolnt that model the correlations between different feature fields by multi-head self-attention
mechanism. Input shape

* A 3D tensor with shape: (batch_size, field_size,embedding_size).

Output shape
* 3D tensor with shape: (batch_size, field_size, embedding_size).

Arguments

70 Chapter 2. DisscussionGroup

https://arxiv.org/pdf/1611.00144.pdf

DeepCTR-Torch Documentation, Release 0.2.9

* in_features : Positive integer, dimensionality of input features.

* head_num: int.The head number in multi-head self-attention network.

* use_res: bool.Whether or not use standard residual connections before output.

 seed: A Python integer to use as random seed.
References

* [Song W, Shi C, Xiao Z, et al. AutoInt: Automatic Feature Interaction Learning via Self-Attentive

Neural Networks[J]. arXiv preprint arXiv:1810.11921, 2018.](https://arxiv.org/abs/1810.11921)
forward (inputs)
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks
while the latter silently ignores them.

class deepctr_torch.layers.interaction.LogTransformLayer (field_size, em-
bedding_size,

Itl_hidden_size)
Logarithmic Transformation Layer in Adaptive factorization network, which models arbitrary-order cross fea-

tures.
Input shape

e 3D tensor with shape: (batch_size, field_size, embedding_size).
Output shape

¢ 2D tensor with shape: (batch_size, 1tl_hidden_sizexembedding_size).
Arguments

« field_size : positive integer, number of feature groups

* embedding_size : positive integer, embedding size of sparse features

* Itl_hidden_size : integer, the number of logarithmic neurons in AFN
References

* Cheng, W,, Shen, Y. and Huang, L. 2020. Adaptive Factorization Network: Learning Adaptive-Order
Feature

Interactions. Proceedings of the AAAI Conference on Atrtificial Intelligence. 34, 04 (Apr. 2020),
3609-3616.

forward (inputs)
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks
while the latter silently ignores them.

2.7. DeepCTR-Torch Layers API 71

DeepCTR-Torch Documentation, Release 0.2.9

class deepctr_torch.layers.interaction.OutterProductLayer (field_size, embed-
ding_size, ker-
nel_type="mat’,
seed=1024, de-
vice="cpu’)

OutterProduct Layer used in PNN.This implemention is adapted from code that the author of the paper published
on https://github.com/Atomu2014/product-nets.

Input shape
* A list of N 3D tensor with shape: (batch_size, 1, embedding_size).
Output shape
* 2D tensor with shape: (batch_size,N* (N-1) /2).
Arguments
* filed_size : Positive integer, number of feature groups.
* kernel_type: str. The kernel weight matrix type to use,can be mat,vec or num
* seed: A Python integer to use as random seed.
References

* [Qu Y, Cai H, Ren K, et al. Product-based neural networks for user response predic-
tion[C]//Data Mining (ICDM), 2016 IEEE 16th International Conference on. IEEE, 2016:
1149-1154.](https://arxiv.org/pdf/1611.00144.pdf)

forward (inputs)
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks
while the latter silently ignores them.

class deepctr_torch.layers.interaction.SENETLayer (filed_size, reduction_ratio=3,
seed=1024, device="cpu’)

SENETLayer used in FiBiNET.
Input shape
* A list of 3D tensor with shape: (batch_size, filed_size,embedding_size).
Output shape
* A list of 3D tensor with shape: (batch_size, filed_size, embedding_size).
Arguments
* filed_size : Positive integer, number of feature groups.

* reduction_ratio : Positive integer, dimensionality of the
attention network output space.
* seed : A Python integer to use as random seed.

References

72 Chapter 2. DisscussionGroup

https://github.com/Atomu2014/product-nets
https://arxiv.org/pdf/1611.00144.pdf

DeepCTR-Torch Documentation, Release 0.2.9

* [FiBiNET: Combining Feature Importance and Bilinear feature Interaction for Click-Through
Rate Prediction

Tongwen](https://arxiv.org/pdf/1905.09433.pdf)

forward (inputs)
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks
while the latter silently ignores them.

2.7.3 deepctr_torch.layers.sequence module
class deepctr_torch.layers.sequence.AGRUCell (input_size, hidden_size, bias=True)
Attention based GRU (AGRU)

Reference: - Deep Interest Evolution Network for Click-Through Rate Prediction[J]. arXiv preprint
arXiv:1809.03672, 2018.

forward (inputs, hx, att_score)
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks
while the latter silently ignores them.

class deepctr_torch.layers.sequence.AUGRUCell (input_size, hidden_size, bias=True)
Effect of GRU with attentional update gate (AUGRU)

Reference: - Deep Interest Evolution Network for Click-Through Rate Prediction[J]. arXiv preprint
arXiv:1809.03672, 2018.

forward (inputs, hx, att_score)
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks
while the latter silently ignores them.

2.7. DeepCTR-Torch Layers API 73

https://arxiv.org/pdf/1905.09433.pdf

DeepCTR-Torch Documentation, Release 0.2.9

class deepctr_torch.layers.sequence.AttentionSequencePoolingLayer (att_hidden_units=(80,
40),
att_activation="sigmoid’,
weight_normalization=False,
re-
turn_score=Fualse,
sup-
ports_masking=False,
embed-
ding_dim=4,
*rkwargs)

The Attentional sequence pooling operation used in DIN & DIEN.

Arguments
« att_hidden_units:list of positive integer, the attention net layer number and units in each layer.
e att_activation: Activation function to use in attention net.
» weight_normalization: bool. Whether normalize the attention score of local activation unit.
« supports_masking:If True,the input need to support masking.
References

e [Zhou G, Zhu X, Song C, et al. Deep interest network for click-through rate predic-
tion[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining. ACM, 2018: 1059-1068.](https://arxiv.org/pdf/1706.06978.pdf)

forward (query, keys, keys_length, mask=None)

Input shape
* A list of three tensor: [query,keys,keys_length]
* query is a 3D tensor with shape: (batch_size, 1, embedding_size)
* keys is a 3D tensor with shape: (batch_size, T, embedding_size)
* keys_length is a 2D tensor with shape: (batch_size, 1)

Output shape
* 3D tensor with shape: (batch_size, 1, embedding_size).

class deepctr_torch.layers.sequence.DynamicGRU (input_size, hidden_size, bias=True,
gru_type="AGRU”)

forward (inputs, att_scores=None, hx=None)
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks
while the latter silently ignores them.

class deepctr_torch.layers.sequence.KMaxPooling (k, axis, device="cpu’)
K Max pooling that selects the k biggest value along the specific axis.

Input shape

e nD tensor with shape: (batch_size, ..., input_dim).

74 Chapter 2. DisscussionGroup

https://arxiv.org/pdf/1706.06978.pdf

DeepCTR-Torch Documentation, Release 0.2.9

Output shape
e nD tensor with shape: (batch_size, ..., output_dim).

Arguments
* k: positive integer, number of top elements to look for along the axis dimension.
* axis: positive integer, the dimension to look for elements.

forward (inputs)
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks
while the latter silently ignores them.

class deepctr_torch.layers.sequence.SequencePoolinglayer (mode="mean’, sup-
ports_masking=False,
device="cpu’)
The SequencePoolinglLayer is used to apply pooling operation(sum,mean,max) on variable-length sequence
feature/multi-value feature.
Input shape
A list of two tensor [seq_value,seq_len]
* seq_value is a 3D tensor with shape: (batch_size, T, embedding_size)
* seq_len is a 2D tensor with shape : (batch_size, 1),indicate valid length of each sequence.
Output shape
* 3D tensor with shape: (batch_size, 1, embedding_size).
Arguments

* mode:str.Pooling operation to be used,can be sum,mean or max.

forward (seq_value_len_list)
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks
while the latter silently ignores them.

2.8 deepctr_torch.callbacks module

class deepctr_torch.callbacks.ModelCheckpoint (filepath, monitor="val_loss’, ver-
bose=0, save_best_only=False,
save_weights_only=False, mode="auto’,
save_freq="epoch’, options=None,
*rkwargs)

Save the model after every epoch.

2.8. deepctr_torch.callbacks module 75

DeepCTR-Torch Documentation, Release 0.2.9

filepath can contain named formatting options, which will be filled the value of epoch and keys in logs (passed
in on_epoch_end).

For example: if filepath is weights.{epoch:02d}-{val_loss:.2f}.hdf5, then the model checkpoints will be saved
with the epoch number and the validation loss in the filename.

Arguments: filepath: string, path to save the model file. monitor: quantity to monitor. verbose: verbosity
mode, 0 or 1. save_best_only: if save_best_only=True,

the latest best model according to the quantity monitored will not be overwritten.
mode: one of {auto, min, max}. If save_best_only=True, the decision to overwrite the current save file
is made based on either the maximization or the minimization of the monitored quantity. For val_acc,

this should be max, for val_loss this should be min, etc. In auto mode, the direction is automatically
inferred from the name of the monitored quantity.

save_weights_only: if True, then only the model’s weights will be saved
(model.save_weights(filepath)), else the full model is saved (model.save(filepath)).
period: Interval (number of epochs) between checkpoints.

on_epoch_end (epoch, logs=None)
Called at the end of an epoch.

Subclasses should override for any actions to run. This function should only be called during TRAIN
mode.

Args: epoch: Integer, index of epoch. logs: Dict, metric results for this training epoch, and for the

validation epoch if validation is performed. Validation result keys are prefixed with val_.
For training epoch, the values of the

Model’s metrics are returned. Example [‘{‘loss’: 0.2, ‘accuracy’:] 0.7}°.

76 Chapter 2. DisscussionGroup

CHAPTER 3

Indices and tables

* genindex
* modindex

e search

77

DeepCTR-Torch Documentation, Release 0.2.9

78

Chapter 3. Indices and tables

Python Module Index

d

deepctr_torch.
deepctr_torch.
deepctr_torch.
deepctr_torch.
deepctr_torch.
deepctr_torch.
deepctr_torch.
deepctr_torch.
deepctr_torch.
deepctr_torch.
deepctr_torch.
deepctr_torch.
deepctr_torch.
deepctr_torch.
deepctr_torch.
deepctr_torch.
deepctr_torch.
deepctr_torch.
deepctr_torch.
deepctr_torch.
deepctr_torch.

58

deepctr_torch.
deepctr_torch.
deepctr_torch.
deepctr_torch.
deepctr_torch.

callbacks, 75

layers
layers

layers.
.afm, 45
.autoint, 52
.basemodel, 38
.ccpm, 39

.dcn, 46
.decnmix, 47
.deepfm, 42
.dien, 50
.difm, 57
.din, 49

models
models
models
models
models
models
models
models
models
models

models.
models.
.mlr, 43
.multitask.esmm, 59
.multitask.mmoe, 60
.multitask.ple, 61
.multitask.sharedbottomn,

models
models
models
models
models

models
models
models
models
models

.core, 63
.interaction, 65

sequence, 73

fibinet, 55
ifm, 56

.nfm, 44
.onn, 54
.pnn, 40
.wdl, 41
.xdeepfm, 51

79

DeepCTR-Torch Documentation, Release 0.2.9

80

Python Module Index

Index

A deepctr_torch.layers.sequence (module), 73

AFM (class in deepctr_torch.models.afm), 45 deepctr_torch.models.afm (module), 45

AFMLayer (class in deepctr_torch.layers.interaction), S€epctr_torch.models.autoint (module), 52
65 deepctr_torch.models.basemodel (module),

AGRUCel1 (class in deepctr_torch.layers.sequence), 73 38

AttentionSequencePoolingLayer (class in deepctr_torch.models.ccpm (module), 39
deepctr_torch.layers.sequence), 73 deepctr_torch.models.dcn (module), 46

AUGRUCell (class in deepctr_torch.layers.sequence), 9€€pctr_torch.models.denmix (module), 47
73 deepctr_torch.models.deepfm (module), 42

deepctr_torch.models.dien (module), 50
deepctr_torch.models.difm (module), 57

B deepctr_torch.models.din (module), 49
deepctr_torch.models. fibinet (module), 55
deepctr_torch.models. ifm (module), 56

AutolInt (class in deepctr_torch.models.autoint), 52

BaseModel (class in deepctr_torch.models.basemodel),

38
BilInteractionPooling (class in deepctr_torch.models.mlr (i?wdule), 43
. . deepctr_torch.models.multitask.esmm
deepctr_torch.layers.interaction), 65 Jule). 59
BilinearInteraction (class in (module),

deepctr_torch.models.multitask.mmoe

deepctr_torch.layers.interaction), 66 (module). 60

C deepctr_torch.models.multitask.ple (mod-
. ule), 61
CCPM (clas; n deepctr_torch.mode'ls.ccpm)., 39 deepctr_torch.models.multitask.sharedbottom
CIN (class in deepctr_torch.layers.interaction), 67 (module), 58
compile () (deepctr_torch.models.basemodel. BaseModel ’

deepctr_torch.models.nfm (module), 44
deepctr_torch.models.onn (module), 54
deepctr_torch.models.pnn (module), 40
deepctr_torch.models.wdl (module), 41

method), 38
Conv2dSame (class in deepctr_torch.layers.core), 63
ConvLayer (class in deepctr_torch.layers.interaction),

67) deepctr_torch.models.xdeepfm (module), 51
CrossNet (class in deepctr_torch.layers.interaction), DeepFM (class in deepctr_torch.models.deepfm), 42
68 . . DIEN (class in deepctr_torch.models.dien), 50
CrossNetMix) (class) n prEM (class in deepctr_torch.models.difim), 57
deepctr_torch.layers.interaction), 69 DIN (class in deepctr_torch.models.din), 49
D DNN (class in deepctr_torch.layers.core), 63
DynamicGRU (class in deepctr_torch.layers.sequence),
DCN (class in deepctr_torch.models.dcn), 46 74
DCNMix (class in deepctr_torch.models.dcnmix), 47
deepctr_torch.callbacks (module), 75 E
deepctr_torch.layers.core (module), 63 ESMM (class in deepctr_torch.models.multitask.esmm), 59
deepctr_torch.layers.interaction (mod- oyalyate () (deepctr_torch.models.basemodel. BaseModel
ule), 65 method), 38

81

DeepCTR-Torch Documentation, Release 0.2.9

F method), 53

FiBiNET (class in deepctr_torch.models.fibinet), 55 forward () (deepctr_torch.models.ccpm. CCPM

fit () (deepctr_torch.models.basemodel. BaseModel method), 40
method), 38 forward () (deepctr_torch.models.dcn.DCN method),

FM (class in deepctr_torch.layers.interaction), 69 47 . .

forward() (deepctr_torch.layers.core.Conv2dSame forward() (deepctr_torch.models.dcnmix.DCNMix
method), 63 method), 48

forward () (deepctr_torch.layers.core. DNN method), forward() (deepctr_torch.models.deepfm.DeepFM
63 method), 43

forward () (deepctr_torch.layers.core.LocalActivationUnCrWaxrd () (deepctr_torch.models.dien. DIEN method),
method), 64 51 ‘ .

forward () (deepctr_torch.layers.core.PredictionLayer forward () (deepctr_torch.models.dien.InterestEvolving
method), 65 method), 51

forward () (deepctr_torch.layers.interaction.AFMLayer £orward() (deepctr_torch.models.dien.InterestExtractor
method), 65 method), 51

forward () (deepctr_torch.layers.interaction.Bilnte mctiorﬁ%‘ﬁﬁg daq)

method), 66

(deepctr_torch.models.difm. DIFM
method), 57

forward () (deepctr_torch.layers.interaction. BilinearIntefeefio@ td () (deepctr_torch.models.din.DIN - method),
49

method), 66
forward()

(deepctr_torch.layers.interaction.CIN ~ £orward ()

(deepctr_torch.models.fibinet. FiIBINET

method), 67 method), 55

forward () (deepctr_torch.layers.interaction.ConvLayer forward () (deepctr_torch.models.ifmAFM method),
method), 68 56

forward () (deepctr_torch.layers.interaction.CrossNet £orward () (deepctr_torch.models.mlrMLR method),
method), 68 44

forward () (deepctr_torch.layers.interaction.CrossNetMix ©rWaxrd () (deepctr_torch.models.multitask.esmm. ESMM
method), 69 method), 60

forward () (deepctr_torch.layers.interaction.FM forward () (deepctr_torch.models.multitask.mmoe. MMOE
method), 69 method), 61

forward () (deepctr_torch.layers.interaction.[nnerProducifBaS/‘éF‘r d() (deepctr_torch.models.multitask.ple. PLE

method), 70

method), 62

forward () (deepctr_torch.layers.interaction.Interacting ngpég,wa rd () (deepctr_torch.models.multitask.sharedbottom.SharedBottom

method), 71

method), 59

forward () (deepctr_torch.layers.interaction.LogTransforh@EY&rd () (deepctr_torch.models.nfm.NFM method),
45

method), 71

forward () (deepctr_torch.layers. intemction.0utlerPr0du§%yé‘rr d () (deepctr_torch.models.onn.ONN method),
54

method), 72

forward () (deepctr_torch.layers. interaction.SENETLayeif orward () (deepctr_torch.models.pnn.PNN method),

method), 73
forward () (deepctr_torch.layers.sequence. AGRUCell
method), 73

41
forward () (deepctr_torch.models.wdl. WDL method),
42

forward () (deepctr_torch.layers.sequence.AttentionS equéﬁ“é)"@d?ﬁz‘&La)fé;e epctr_torch.models.xdeepfm.xDeepFM

method), 74

forward () (deepctr_torch.layers.sequence. AUGRUCell

method), 73

method), 52

forward () (deepctr_torch.layers.sequence.DynamicGRULFM (class in deepctr_torch.models.ifim), 56

method), 74

forward () (deepctr_torch.layers.sequence. KMaxPooling

method), 75

InnerProductLayer (class in
deepctr_torch.layers.interaction), 70
InteractingLayer (class in

forward () (deepctr_torch.layers.sequence.SequencePoolingLayer deepctr_torch.layers.interaction), 70

method), 75
forward () (deepctr_torch.models.afm.AFM method),
46

forward () (deepctr_torch.models.autoint.Autolnt

InterestEvolving (class in
deepctr_torch.models.dien), 51

InterestExtractor (class in
deepctr_torch.models.dien), 51

82

Index

DeepCTR-Torch Documentation, Release 0.2.9

K

KMaxPooling (class in
deepctr_torch.layers.sequence), 74

L

LocalActivationUnit (class in
deepctr_torch.layers.core), 64
LogTransformLayer (class in

deepctr_torch.layers.interaction), 71

M

MLR (class in deepctr_torch.models.mlr), 43

MMOE (class in deepctr_torch.models.multitask.mmoe),
60

ModelCheckpoint (class in deepctr_torch.callbacks),
75

N

NFM (class in deepctr_torch.models.nfm), 44

O

on_epoch_end () (deepctr_torch.callbacks.ModelCheckpoint

method), 76
ONN (class in deepctr_torch.models.onn), 54
OutterProductLayer (class in

deepctr_torch.layers.interaction), 71

P

PLE (class in deepctr_torch.models.multitask.ple), 61

PNN (class in deepctr_torch.models.pnn), 41

predict () (deepctr_torch.models.basemodel. BaseModel
method), 39

PredictionLayer (class in
deepctr_torch.layers.core), 64

S

SENETLayer (class in
deepctr_torch.layers.interaction), 72

SequencePoolingLayer (class in
deepctr_torch.layers.sequence), 75

SharedBottom (class in
deepctr_torch.models.multitask.sharedbottom),
58

W

WDL (class in deepctr_torch.models.wdl), 42

X

xDeepFM (class in deepctr_torch.models.xdeepfm), 51

Index

83

	News
	DisscussionGroup
	Quick-Start
	Features
	Examples
	FAQ
	History
	DeepCTR-Torch Models API
	DeepCTR-Torch Layers API
	deepctr_torch.callbacks module

	Indices and tables
	Python Module Index
	Index

