Source code for deepctr_torch.models.difm

# -*- coding:utf-8 -*-
"""
Author:
    zanshuxun, zanshuxun@aliyun.com
Reference:
    [1] Lu W, Yu Y, Chang Y, et al. A Dual Input-aware Factorization Machine for CTR Prediction[C]//IJCAI. 2020: 3139-3145.(https://www.ijcai.org/Proceedings/2020/0434.pdf)
"""
import torch
import torch.nn as nn

from .basemodel import BaseModel
from ..inputs import combined_dnn_input, SparseFeat, VarLenSparseFeat
from ..layers import FM, DNN, InteractingLayer, concat_fun


[docs]class DIFM(BaseModel): """Instantiates the DIFM Network architecture. :param linear_feature_columns: An iterable containing all the features used by linear part of the model. :param dnn_feature_columns: An iterable containing all the features used by deep part of the model. :param att_head_num: int. The head number in multi-head self-attention network. :param att_res: bool. Whether or not use standard residual connections before output. :param dnn_hidden_units: list,list of positive integer or empty list, the layer number and units in each layer of DNN :param l2_reg_linear: float. L2 regularizer strength applied to linear part :param l2_reg_embedding: float. L2 regularizer strength applied to embedding vector :param l2_reg_dnn: float. L2 regularizer strength applied to DNN :param init_std: float,to use as the initialize std of embedding vector :param seed: integer ,to use as random seed. :param dnn_dropout: float in [0,1), the probability we will drop out a given DNN coordinate. :param dnn_activation: Activation function to use in DNN :param dnn_use_bn: bool. Whether use BatchNormalization before activation or not in DNN :param task: str, ``"binary"`` for binary logloss or ``"regression"`` for regression loss :param device: str, ``"cpu"`` or ``"cuda:0"`` :param gpus: list of int or torch.device for multiple gpus. If None, run on ``device`` . ``gpus[0]`` should be the same gpu with ``device`` . :return: A PyTorch model instance. """ def __init__(self, linear_feature_columns, dnn_feature_columns, att_head_num=4, att_res=True, dnn_hidden_units=(256, 128), l2_reg_linear=0.00001, l2_reg_embedding=0.00001, l2_reg_dnn=0, init_std=0.0001, seed=1024, dnn_dropout=0, dnn_activation='relu', dnn_use_bn=False, task='binary', device='cpu', gpus=None): super(DIFM, self).__init__(linear_feature_columns, dnn_feature_columns, l2_reg_linear=l2_reg_linear, l2_reg_embedding=l2_reg_embedding, init_std=init_std, seed=seed, task=task, device=device, gpus=gpus) if not len(dnn_hidden_units) > 0: raise ValueError("dnn_hidden_units is null!") self.fm = FM() # InteractingLayer (used in AutoInt) = multi-head self-attention + Residual Network self.vector_wise_net = InteractingLayer(self.embedding_size, att_head_num, att_res, scaling=True, device=device) self.bit_wise_net = DNN(self.compute_input_dim(dnn_feature_columns, include_dense=False), dnn_hidden_units, activation=dnn_activation, l2_reg=l2_reg_dnn, dropout_rate=dnn_dropout, use_bn=dnn_use_bn, init_std=init_std, device=device) self.sparse_feat_num = len(list(filter(lambda x: isinstance(x, SparseFeat) or isinstance(x, VarLenSparseFeat), dnn_feature_columns))) self.transform_matrix_P_vec = nn.Linear( self.sparse_feat_num * self.embedding_size, self.sparse_feat_num, bias=False).to(device) self.transform_matrix_P_bit = nn.Linear( dnn_hidden_units[-1], self.sparse_feat_num, bias=False).to(device) self.add_regularization_weight( filter(lambda x: 'weight' in x[0] and 'bn' not in x[0], self.vector_wise_net.named_parameters()), l2=l2_reg_dnn) self.add_regularization_weight( filter(lambda x: 'weight' in x[0] and 'bn' not in x[0], self.bit_wise_net.named_parameters()), l2=l2_reg_dnn) self.add_regularization_weight(self.transform_matrix_P_vec.weight, l2=l2_reg_dnn) self.add_regularization_weight(self.transform_matrix_P_bit.weight, l2=l2_reg_dnn) self.to(device)
[docs] def forward(self, X): sparse_embedding_list, _ = self.input_from_feature_columns(X, self.dnn_feature_columns, self.embedding_dict) if not len(sparse_embedding_list) > 0: raise ValueError("there are no sparse features") att_input = concat_fun(sparse_embedding_list, axis=1) att_out = self.vector_wise_net(att_input) att_out = att_out.reshape(att_out.shape[0], -1) m_vec = self.transform_matrix_P_vec(att_out) dnn_input = combined_dnn_input(sparse_embedding_list, []) dnn_output = self.bit_wise_net(dnn_input) m_bit = self.transform_matrix_P_bit(dnn_output) m_x = m_vec + m_bit # m_x is the complete input-aware factor logit = self.linear_model(X, sparse_feat_refine_weight=m_x) fm_input = torch.cat(sparse_embedding_list, dim=1) refined_fm_input = fm_input * m_x.unsqueeze(-1) # \textbf{v}_{x,i}=m_{x,i} * \textbf{v}_i logit += self.fm(refined_fm_input) y_pred = self.out(logit) return y_pred