Source code for deepctr_torch.models.din

# -*- coding:utf-8 -*-
"""
Author:
    Yuef Zhang
Reference:
    [1] Zhou G, Zhu X, Song C, et al. Deep interest network for click-through rate prediction[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2018: 1059-1068. (https://arxiv.org/pdf/1706.06978.pdf)
"""

from .basemodel import BaseModel
from ..inputs import *
from ..layers import *
from ..layers.sequence import AttentionSequencePoolingLayer


[docs]class DIN(BaseModel): """Instantiates the Deep Interest Network architecture. :param dnn_feature_columns: An iterable containing all the features used by deep part of the model. :param history_feature_list: list,to indicate sequence sparse field :param dnn_use_bn: bool. Whether use BatchNormalization before activation or not in deep net :param dnn_hidden_units: list,list of positive integer or empty list, the layer number and units in each layer of deep net :param dnn_activation: Activation function to use in deep net :param att_hidden_size: list,list of positive integer , the layer number and units in each layer of attention net :param att_activation: Activation function to use in attention net :param att_weight_normalization: bool. Whether normalize the attention score of local activation unit. :param l2_reg_dnn: float. L2 regularizer strength applied to DNN :param l2_reg_embedding: float. L2 regularizer strength applied to embedding vector :param dnn_dropout: float in [0,1), the probability we will drop out a given DNN coordinate. :param init_std: float,to use as the initialize std of embedding vector :param seed: integer ,to use as random seed. :param task: str, ``"binary"`` for binary logloss or ``"regression"`` for regression loss :param device: str, ``"cpu"`` or ``"cuda:0"`` :param gpus: list of int or torch.device for multiple gpus. If None, run on `device`. `gpus[0]` should be the same gpu with `device`. :return: A PyTorch model instance. """ def __init__(self, dnn_feature_columns, history_feature_list, dnn_use_bn=False, dnn_hidden_units=(256, 128), dnn_activation='relu', att_hidden_size=(64, 16), att_activation='Dice', att_weight_normalization=False, l2_reg_dnn=0.0, l2_reg_embedding=1e-6, dnn_dropout=0, init_std=0.0001, seed=1024, task='binary', device='cpu', gpus=None): super(DIN, self).__init__([], dnn_feature_columns, l2_reg_linear=0, l2_reg_embedding=l2_reg_embedding, init_std=init_std, seed=seed, task=task, device=device, gpus=gpus) self.sparse_feature_columns = list( filter(lambda x: isinstance(x, SparseFeat), dnn_feature_columns)) if dnn_feature_columns else [] self.varlen_sparse_feature_columns = list( filter(lambda x: isinstance(x, VarLenSparseFeat), dnn_feature_columns)) if dnn_feature_columns else [] self.history_feature_list = history_feature_list self.history_feature_columns = [] self.sparse_varlen_feature_columns = [] self.history_fc_names = list(map(lambda x: "hist_" + x, history_feature_list)) for fc in self.varlen_sparse_feature_columns: feature_name = fc.name if feature_name in self.history_fc_names: self.history_feature_columns.append(fc) else: self.sparse_varlen_feature_columns.append(fc) att_emb_dim = self._compute_interest_dim() self.attention = AttentionSequencePoolingLayer(att_hidden_units=att_hidden_size, embedding_dim=att_emb_dim, att_activation=att_activation, return_score=False, supports_masking=False, weight_normalization=att_weight_normalization) self.dnn = DNN(inputs_dim=self.compute_input_dim(dnn_feature_columns), hidden_units=dnn_hidden_units, activation=dnn_activation, dropout_rate=dnn_dropout, l2_reg=l2_reg_dnn, use_bn=dnn_use_bn) self.dnn_linear = nn.Linear(dnn_hidden_units[-1], 1, bias=False).to(device) self.to(device)
[docs] def forward(self, X): _, dense_value_list = self.input_from_feature_columns(X, self.dnn_feature_columns, self.embedding_dict) # sequence pooling part query_emb_list = embedding_lookup(X, self.embedding_dict, self.feature_index, self.sparse_feature_columns, return_feat_list=self.history_feature_list, to_list=True) keys_emb_list = embedding_lookup(X, self.embedding_dict, self.feature_index, self.history_feature_columns, return_feat_list=self.history_fc_names, to_list=True) dnn_input_emb_list = embedding_lookup(X, self.embedding_dict, self.feature_index, self.sparse_feature_columns, to_list=True) sequence_embed_dict = varlen_embedding_lookup(X, self.embedding_dict, self.feature_index, self.sparse_varlen_feature_columns) sequence_embed_list = get_varlen_pooling_list(sequence_embed_dict, X, self.feature_index, self.sparse_varlen_feature_columns, self.device) dnn_input_emb_list += sequence_embed_list deep_input_emb = torch.cat(dnn_input_emb_list, dim=-1) # concatenate query_emb = torch.cat(query_emb_list, dim=-1) # [B, 1, E] keys_emb = torch.cat(keys_emb_list, dim=-1) # [B, T, E] keys_length_feature_name = [feat.length_name for feat in self.varlen_sparse_feature_columns if feat.length_name is not None] keys_length = torch.squeeze(maxlen_lookup(X, self.feature_index, keys_length_feature_name), 1) # [B, 1] hist = self.attention(query_emb, keys_emb, keys_length) # [B, 1, E] # deep part deep_input_emb = torch.cat((deep_input_emb, hist), dim=-1) deep_input_emb = deep_input_emb.view(deep_input_emb.size(0), -1) dnn_input = combined_dnn_input([deep_input_emb], dense_value_list) dnn_output = self.dnn(dnn_input) dnn_logit = self.dnn_linear(dnn_output) y_pred = self.out(dnn_logit) return y_pred
def _compute_interest_dim(self): interest_dim = 0 for feat in self.sparse_feature_columns: if feat.name in self.history_feature_list: interest_dim += feat.embedding_dim return interest_dim
if __name__ == '__main__': pass